Acceptable Solutions and Verification Methods

For New Zealand Building Code Clause E3 Internal Moisture
Status of Verification Methods and Acceptable Solutions

Verification Methods and Acceptable Solutions are prepared by the Ministry of Business, Innovation and Employment in accordance with section 22 of the Building Act 2004. Verification Methods and Acceptable Solutions are for use in establishing compliance with the New Zealand Building Code.

A person who complies with a Verification Method or Acceptable Solution will be treated as having complied with the provisions of the Building Code to which the Verification Method or Acceptable Solution relates. However, using a Verification Method or Acceptable Solution is only one method of complying with the Building Code. There may be alternative ways to comply.

Users should make themselves familiar with the preface to the New Zealand Building Code Handbook, which describes the status of Verification Methods and Acceptable Solutions and explains alternative methods of achieving compliance. Defined words (italicised in the text) and classified uses are explained in Clauses A1 and A2 of the Building Code and in the Definitions at the start of this document.
Document Status

The most recent version of this document (Amendment 6), as detailed in the Document History, is approved by the Chief Executive of the Ministry of Business, Innovation and Employment. It is effective from 1 January 2017 and supersedes all previous versions of this document.

The previous version of this document (Amendment 5) will cease to have effect on 30 May 2017.

People using this document should check for amendments on a regular basis. The Ministry of Business, Innovation and Employment may amend any part of any Verification Method or Acceptable Solution at any time. Up-to-date versions of Verification Methods and Acceptable Solutions are available from www.building.govt.nz

E3: Document History

<table>
<thead>
<tr>
<th>Date</th>
<th>Alterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>First published</td>
<td>July 1992</td>
</tr>
<tr>
<td>Amendment 1</td>
<td>September 1993, p. 7, 3.1.2</td>
</tr>
<tr>
<td>Amendment 2</td>
<td>1 July 2001, p. 2, Document History, Status</td>
</tr>
<tr>
<td></td>
<td>14 October 2004, pp. 3 and 4 Code Clause</td>
</tr>
<tr>
<td>Amendment 4</td>
<td>Effective from 10 October 2011 until 14 August 2014, p. 2, Document History, Status</td>
</tr>
<tr>
<td></td>
<td>p. 7, References</td>
</tr>
<tr>
<td>Amendment 5</td>
<td>14 February 2014 until 30 May 2017, p. 2A, Document History, Status</td>
</tr>
<tr>
<td></td>
<td>p. 7, References</td>
</tr>
<tr>
<td>Amendment 6</td>
<td>Effective 1 January 2017, p. 13 1.1.4</td>
</tr>
</tbody>
</table>

Note: Page numbers relate to the document at the time of Amendment and may not match page numbers in current document.
New Zealand Building Code
Clause E3 Internal Moisture

This Clause is extracted from the New Zealand Building Code contained in the First Schedule of the Building Regulations 1992.

FIRST SCHEDULE—continued

Provisions

OBJECTIVE

E3.1 The objective of this provision is to—
(a) Safeguard people against illness, injury, or loss of amenity that could result from the accumulation of internal moisture; and
(b) Protect household units and other property from damage caused by free water from another household unit in the same building.

FUNCTIONAL REQUIREMENT

E3.2 Buildings must be constructed to avoid the likelihood of—
(a) Fungal growth or the accumulation of contaminants on linings and other building elements; and
(b) Free water overflow penetrating to an adjoining household unit; and
(c) Damage to building elements being caused by the presence of moisture.

PERFORMANCE

E3.3.1 An adequate combination of thermal resistance, ventilation, and space temperature must be provided to all habitable spaces, bathrooms, laundries, and other spaces where moisture may be generated or may accumulate.

E3.3.2 Freewater from accidental overflow from sanitary fixtures or sanitary appliances must be disposed of in a way that avoids loss of amenity or damage to household units or other property.

E3.3.3 Floor surfaces of any space containing sanitary fixtures or sanitary appliances must be impervious and easily cleaned.

Limits on application

Performance E3.3.1 does not apply to Communal Non-residential, Commercial, Industrial, Outbuildings or Ancillary buildings.
FIRST SCHEDULE—continued

<table>
<thead>
<tr>
<th>Provisions</th>
<th>Limits on application</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3.3.4 Wall surfaces adjacent to sanitary fixtures or sanitary appliances must be impervious and easily cleaned.</td>
<td></td>
</tr>
<tr>
<td>E3.3.5 Surfaces of building elements likely to be splashed or become contaminated in the course of the intended use of the building, must be impervious and easily cleaned.</td>
<td></td>
</tr>
<tr>
<td>E3.3.6 Surfaces of building elements likely to be splashed must be constructed in a way that prevents water splash from penetrating behind linings or into concealed spaces.</td>
<td></td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Reference</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>7</td>
</tr>
<tr>
<td>Definitions</td>
<td>9</td>
</tr>
<tr>
<td>Verification Method E3/VM1</td>
<td>11</td>
</tr>
<tr>
<td>Acceptable Solution E3/AS1</td>
<td>13</td>
</tr>
<tr>
<td>1.0 Prevention of Fungal Growth</td>
<td>13</td>
</tr>
<tr>
<td>1.1 Thermal resistance</td>
<td>13</td>
</tr>
<tr>
<td>1.2 Ventilation</td>
<td>14</td>
</tr>
<tr>
<td>1.3 Condensation control</td>
<td>14</td>
</tr>
<tr>
<td>2.0 Overflow</td>
<td>14</td>
</tr>
<tr>
<td>2.1 Containment</td>
<td>14</td>
</tr>
<tr>
<td>2.2 Floor wastes</td>
<td>14</td>
</tr>
<tr>
<td>3.0 Watersplash</td>
<td>14</td>
</tr>
<tr>
<td>3.1 Lining materials</td>
<td>14</td>
</tr>
<tr>
<td>3.2 Joints</td>
<td>15</td>
</tr>
<tr>
<td>3.3 Showers and urinals</td>
<td>16</td>
</tr>
<tr>
<td>Index</td>
<td>19</td>
</tr>
</tbody>
</table>
References

For the purposes of New Zealand Building Code (NZBC) compliance, the Standards and documents referenced in this Verification Method and Acceptable Solution (primary reference documents) must be the editions, along with their specific amendments, listed below. Where these primary reference documents refer to other Standards or documents (secondary reference documents), which in turn may also refer to other Standards or documents, and so on (lower-order reference documents), then the version in effect at the date of publication of this Verification Method and Acceptable Solution must be used.

Where quoted

Standards New Zealand

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Where quoted</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZS 4214: 2006</td>
<td>Methods of determining the total thermal resistance of parts of buildings</td>
<td>AS1 Definitions, 1.1.2</td>
</tr>
</tbody>
</table>

Building Research Association of New Zealand

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Where quoted</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRANZ House Insulation Guide: 1995</td>
<td></td>
<td>AS1 1.1.3</td>
</tr>
</tbody>
</table>
Definitions

This is an abbreviated list of definitions for words or terms particularly relevant to this Verification Method and Acceptable Solution. The definitions for any other italicised words may be found in the New Zealand Building Code Handbook.

Adequate Adequate to achieve the objectives of the building code.

Building has the meaning given to it by sections 8 and 9 of the Building Act 2004.

Building element Any structural and non-structural component or assembly incorporated into or associated with a building. Included are fixtures, services, drains, permanent mechanical installations for access, glazing, partitions, ceilings and temporary supports.

Concealed space Any part of the space within a building that cannot be seen from an occupied space.

COMMENT: This term includes any ceiling space, roof space, space under a raised floor (such as computer rooms, floors, or stages), plenums, spaces under a tiered floor, “left-over spaces” created when some structural element or the like has been covered in; small service or duct spaces within the volume of a firecell and the like, but not a protected shaft.

Construct in relation to a building, includes to build, erect, prefabricate, and relocate; and construction has a corresponding meaning.

Fixture An article intended to remain permanently attached to and form part of a building.

Floor waste An outlet located at the low point of a graded floor or in a level floor designed to receive accidental or intentional discharges.

Habitable space A space used for activities normally associated with domestic living, but excludes any bathroom, laundry, water-closet, pantry, walk-in wardrobe, corridor, hallway, lobby, clothes-drying room, or other space of a specialised nature occupied neither frequently nor for extended periods.

Household unit

a) means any building or group of buildings, or part of a building or group of buildings, that is:

i) used, or intended to be used, only or mainly for residential purposes; and

ii) occupied, or intended to be occupied, exclusively as the home or residence of not more than one household; but

b) does not include a hostel, boarding house or other specialised accommodation.

Impervious That which does not allow the passage of moisture.

Insulating material A material that has a thermal conductivity of less than 0.07 W/mK.

Intended use in relation to a building,—

(a) includes any or all of the following:

i) any reasonably foreseeable occasional use that is not incompatible with the intended use:

ii) normal maintenance:

iii) activities undertaken in response to fire or any other reasonably foreseeable emergency; but

(b) does not include any other maintenance and repairs or rebuilding.

Person with a disability means a person who has an impairment or a combination of impairments that limits the extent to which the person can engage in the activities, pursuits, and processes of everyday life, including, without limitation, any of the following:

(a) a physical, sensory, neurological, or intellectual impairment:

(b) a mental illness.

Plumbing system Pipes, joints and fittings laid above ground and used for the conveyance of foul water to the foul water drain, and includes vent pipes.
R-value The common abbreviation for describing the values of both thermal resistance and total thermal resistance.

Sanitary fixture Any fixture which is intended to be used for sanitation. Sanitation The term used to describe the activities of washing and/or excretion carried out in a manner or condition such that the effect on health is minimised, with regard to dirt and infection.

Thermal resistance The resistance to heat flow of a given component of a building element. It is equal to the temperature difference (°C) needed to produce unit heat flux (W/m²) through unit area (m²) under steady conditions. The units are °Cm²/W.

Total thermal resistance The overall air-to-air thermal resistance across all components of a building element such as a wall, roof or floor. (This includes the surface resistances which may vary with environmental changes, e.g. temperature and humidity, but for most purposes can be regarded as having standard values as given in NZS 4214.)
Verification Method E3/VM1

No specific methods have been adopted for verifying compliance with the Performance of NZBC E3.
Acceptable Solution E3/AS1

1.0 Prevention of Fungal Growth

1.0.1 Fungal growth (mildew) is avoided by minimising internal condensation. Condensation is avoided or reduced by maintaining the correct balance between interior temperature and ventilation. Insulation assists in maintaining interior temperatures at a suitable level.

1.0.2 The New Zealand Building Code does not specify minimum heating requirements except for old people's homes and early childhood centres. Occupants will determine their own methods and levels of heating. Typically it is necessary and sufficient, for condensation control in winter, to keep interior temperatures 5°C to 7°C above exterior temperatures in a ventilated space.

1.1 Thermal resistance

1.1.1 R-values for walls, roofs and ceilings shall be no less than:
 a) For light timber frame wall or other framed wall constructions with cavities, 1.5.
 b) For single skin normal weight masonry based wall construction without a cavity, 0.6.
 c) For solid timber wall systems no less than 60 mm thick, 0.6.
 d) For roof or ceilings of any construction, 1.5.

1.1.2 R-values shall be determined using the methods in NZS 4214. Laboratory test samples shall be truly representative of the wall, roof or ceiling system, including any provision for reducing thermal bridging.

1.1.3 Materials and installation

The BRANZ House Insulation Guide provides examples of acceptable wall, roof and ceiling constructions to satisfy the requirements of Paragraph 1.1.1.

COMMENT:
The BRANZ House Insulation Guide gives constructions for a range of R-values. It is essential to choose the correct R-values from these shown in the tables in order to comply with this Acceptable Solution.

1.1.4 For the construction to be acceptable:
 a) Building paper shall extend from the upper side of the top plate to the underside of the bearers or wall plates supporting the ground floor joists.
 b) Deleted
 c) There shall be no perimeter gaps between the insulating material and the framing members.
 d) Where steel framing is used in Housing and Communal Residential building uses a thermal break with a minimum R-value of 0.25 m²°C/W shall be provided at the outside face of each steel framing member. Expanded polystyrene (EPS) strips, 10 mm thick provide an R-value of 0.25 m²°C/W. Other materials or methods may be used to provide the minimum R-value of 0.25 m²°C/W.
 e) If foil insulation is used it must be placed on the lining side of studs, not the cladding side.

COMMENT:
1. Frame construction with 10 mm plaster board linings and a single layer of foil has an R-value of approximately 0.9 and does not satisfy Paragraph 1.1.1.
2. Surface condensation can be a problem where vapour barriers are needed for buildings enclosing very warm or wet areas such as spa pools, saunas and swimming pools, or buildings in a very cold environment such as ski lodges and mountain huts. These situations are not covered by this Acceptable Solution and require specific design.
3. Thermal breaks should be specifically designed for steel framed buildings that are not covered by Building Code Clause E3 Internal Moisture. That is where:
 i) the building use is not Housing or Communal Residential, and
 ii) the moisture load is greater than in Housing, and the building use has high occupant moisture load (eg, schools), and
 iii) there is a temperature differential from inside to outside that is sufficient to cause condensation on steel framing members.

1.1.5 Insulation for energy efficiency

Insulation satisfying the energy efficiency requirements of NZBC H1 cannot automatically be assumed to meet the R-values for internal moisture requirements of Paragraph 1.1.1.
Insulation to prevent condensation relates to thermal resistance of the building element in question (e.g. wall or roof). Insulation for energy efficiency relates to the building as a whole, and the requirement can be met in different ways. It is possible, for example, to obtain sufficient energy efficiency in a building by heavily insulating the floor and ceiling with no insulation in the walls. This would not satisfy the requirement for this acceptable solution because there would not be sufficient insulation in the walls to minimise condensation.

1.2 Ventilation

1.2.1 Ventilation shall be provided naturally or mechanically to comply with G4/AS1.

1.3 Condensation control

1.3.1 In buildings classified as Housing or Communal residential which are not air conditioned, metal-framed windows with single glazing shall be constructed with a means of condensation disposal. An acceptable method is the provision of a condensation collection channel which, either discharges the water to the outside or is of sufficient capacity to hold the water, without overflowing, until it evaporates.

1.3.2 Condensation channels shall have closed ends and no openings which permit ponded water to contact building elements susceptible to moisture. Where provision is made for drainage to the outside, drainage outlets shall have the capacity to expel all condensed water and shall have means of preventing condensed water from being blown back by wind pressure.

1.3.3 Condensation channels and drainage outlets shall be able to be cleaned. The minimum clear dimensions of collection channels shall be 10 mm wide by 5 mm deep.

COMMENT:
1. Condensation can be reduced by good ventilation. Windows incorporating passive ventilators, particularly those with full perimeter ventilation, are effective in reducing condensation.
2. While a 10 mm condensation channel width is normally adequate to prevent overflowing, it is awkward to clean adequately. A more practical width is 20 mm.

2.0 Overflow

2.0.1 If a sanitary fixture is located where accidental overflow could damage an adjoining household unit, containment and a floor waste shall be provided.

2.1 Containment

2.1.1 Containment may be achieved by using impervious floor coverings which are continuous and coved or joints sealed where they meet the wall. (See Figure 1.)

2.2 Floor wastes

2.2.1 Floor wastes shall comply with G13/AS1 Paragraph 3.4.3 c), but a graded floor is not essential in this situation.

3.0 Watersplash

3.1 Lining materials

3.1.1 Floors

The following linings and finishes to floors satisfy the performance for impervious and easily cleaned surfaces in areas exposed to watersplash:

a) Integrally waterproof sheet material (e.g. polyvinylchloride) with sealed joints.

b) Ceramic or stone tiles having 6% maximum water absorption, waterproof grouted joints, and bedded with an adhesive specified by the tile manufacturer as being suitable for the tiles, substrate material and the environment of use.

c) Cement based solid plaster or concrete having a steel trowel or polished finish, (semi-gloss or gloss paint must be used if a paint finish is required).

d) Cork tile or sheet sealed with waterproof applied coatings and with sealed joints.

e) Monolithic applied coatings having a polished non-absorbent finish (e.g. terrazzo).

f) A timber or timber based product such as particleboard sealed with waterproof applied coatings.
COMMENT:
In domestic situations where the bathroom is used mainly by adults, carpet may be acceptable provided it is laid over an impervious surface. In these circumstances a particleboard floor finished with three coats of polyurethane would be considered impervious.

3.1.2 Walls
The following linings and finishes to walls satisfy the performance for impervious and easily cleaned surfaces in areas exposed to watersplash:

a) Integrimally waterproof sheet material (e.g. polyvinylchloride) with sealed joints.

b) Ceramic or stone tiles having 6% maximum water absorption, waterproof grouted joints, and bedded with an adhesive specified by the tile manufacturer as being suitable for the tiles, substrate material and the environment of use.

c) Cement based solid plaster or concrete having a steel trowel or polished finish (semi-gloss or gloss paint must be used if a paint finish is required).

d) Cork tile or sheet sealed with waterproof applied coatings.

e) Monolithic applied coatings having a polished non-absorbent finish (e.g. terrazzo).

f) Sheet linings finished with vinyl coated wallpaper, or semi-gloss or gloss coating.

g) Water resistant sheet linings finished with decorative high pressure laminate or factory applied polyurethane or resin.

h) Modular or multiple lining units which are themselves impervious and easily cleaned, and are installed with impervious joints.

i) Timber or timber based products such as particleboard sealed with waterproof applied coatings.

3.2 Joints
3.2.1 Linings
Where walls and ceilings to sanitary rooms are lined with modular or multiple lining sheets (see Figure 2), the lining system shall:

a) Have impervious joints, or

b) Be fixed over an impervious substrate.
3.3 Showers and urinals

3.3.1 Showers

All shower spaces shall have impervious floor and wall finishes. Lining materials and finishes listed in Paragraphs 3.1.1 and 3.1.2 satisfy this requirement except that within shower enclosures or a 1500 mm horizontal radius from the shower rose where there is no shower enclosure (see Figure 5):

a) The following materials shall not be used:
 i) Cork tile or sheet sealed with waterproof applied coatings,
 ii) Sheet linings finished with vinyl coated wallpaper, or semi-gloss or gloss coating.

b) Ceramic or stone tile finishes shall be laid on a continuous impervious substrate or membrane. (See Figure 4 (c).)

3.3.2 Shower enclosures

Shower floors and bases may be constructed with or without upstands, and where installed for use by people with disabilities shall have level thresholds.

3.3.3 When enclosures, such as walls, screens, doors or curtains are used they shall be continuous from floor level or top of upstand to 1800 mm minimum above floor level and not less than 300 mm above the shower rose.

3.3.4 Where shower trays are used, the junction between tray and wall linings shall be constructed in accordance with Figure 4 (a) or (b).

3.3.5 Where the shower floor has no upstand or where a wall, screen, door or curtain is omitted, the floor shall have a fall of no less than 1:50 towards the floor waste. The fall shall apply to the floor area within a radius of 1500 mm taken from a point vertically below the shower rose, or from any wall within that radius. (See Figure 5.)

3.3.6 Urinals

Impervious wall shall extend horizontally at least 300 mm beyond each side of the urinal and vertically from floor level to a height of 1500 mm.

3.2.2 Joints between fixtures and wall linings

Where baths, basins, tubs or sinks abut impervious linings, the joint between fixture and lining shall be sealed to prevent water penetration to concealed spaces or behind linings. (See Figures 3 (a) and (b).)
Figure 3: Baths, Basins, Tubs and Sinks, Joints against Wall Linings
Paragraph 3.2.2

(a) Junctions of bath and wall

(b) Tub, sink and basin
Figure 4: Shower Trays
Paragraphs 3.3.1 and 3.3.3

- Impervious lining
- Pack out or rebate wall framing
- Close off wall lining
- Sealant
- Stainless steel shower tray

(a) Stainless steel shower tray

(b) Moulded plastic shower tray

(c) Tiled shower tray

Figure 5: Wall and Floor Coverings to Unenclosed Showers
Paragraphs 3.3.1 and 3.3.5

- Impervious lining
- Shower rose
- Fall to waste
- Impervious flooring

(a) Plan

(b) Section
Index

All references to Verification Methods and Acceptable Solutions are preceded by VM or AS respectively.

Condensation channels .. AS1 1.3
Energy efficiency ... AS1 1.1.5

Internal moisture
condensation .. AS1 1.0.1, 1.1.5, 1.3
fungal growth .. AS1 1.0.1

Overflow ... AS1 2.0
containment ... AS1 2.0.1, 2.1, Figure 1
floor waste .. AS1 2.0.1, 2.2

People with disabilities .. AS1 3.3.2
Steel framing ... AS1 1.1.4 d)

Thermal break .. AS1 1.1.4 d)
Thermal resistance .. AS1 1.1
materials and installation .. AS1 1.1.3

Ventilation ... AS1 1.0.1, 1.2

Watersplash .. AS1 3.0
basins ... AS1 3.2.2, Figure 3
baths ... AS1 3.2.2, Figure 3
joints in linings ... AS1 3.2, Figure 2
lining materials ... AS1 3.1, Figure 1
sinks ... AS1 3.2.2, Figure 3
showers AS1 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.3.5, Figures 4 and 5
tubs ... AS1 3.2.2, Figure 3
urinals ... AS1 3.3.6

Windows ... AS1 1.3.1