Acceptable Solutions and Verification Methods

For New Zealand Building Code Clause

E1 Surface Water
Status of Verification Methods and Acceptable Solutions

Verification Methods and Acceptable Solutions are prepared by the Ministry of Business, Innovation and Employment in accordance with section 22 of the Building Act 2004. Verification Methods and Acceptable Solutions are for use in establishing compliance with the New Zealand Building Code.

A person who complies with a Verification Method or Acceptable Solution will be treated as having complied with the provisions of the Building Code to which the Verification Method or Acceptable Solution relates. However, using a Verification Method or Acceptable Solution is only one method of complying with the Building Code. There may be alternative ways to comply.

Users should make themselves familiar with the preface to the New Zealand Building Code Handbook, which describes the status of Verification Methods and Acceptable Solutions and explains alternative methods of achieving compliance. Defined words (italicised in the text) and classified uses are explained in Clauses A1 and A2 of the Building Code and in the Definitions at the start of this document.
Document Status

The most recent version of this document (Amendment 10), as detailed in the Document History, is approved by the Chief Executive of the Ministry of Business, Innovation and Employment. It is effective from 1 January 2017 and supersedes all previous versions of this document.

The previous version of this document (Amendment 9) will cease to have effect on 30 May 2017.

People using this document should check for amendments on a regular basis. The Ministry of Business, Innovation and Employment may amend any part of any Verification Method or Acceptable Solution at any time. Up-to-date versions of Verification Methods and Acceptable Solutions are available from www.building.govt.nz

E1: Document History

<table>
<thead>
<tr>
<th>Date</th>
<th>Alterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>First published</td>
<td>July 1992</td>
</tr>
<tr>
<td>Amendment 1</td>
<td>September 1993</td>
</tr>
<tr>
<td>Amendment 2</td>
<td>19 August 1994</td>
</tr>
<tr>
<td>Reprinted</td>
<td>incorporating Amendments 1 and 2 – October 1994</td>
</tr>
<tr>
<td>Amendment 3</td>
<td>1 December 1995</td>
</tr>
<tr>
<td>Reprinted</td>
<td>incorporating Amendments 1, 2 and 3 – July 1996</td>
</tr>
<tr>
<td>Amendment 4</td>
<td>1 December 2000</td>
</tr>
<tr>
<td>Amendment 5</td>
<td>6 January 2002</td>
</tr>
<tr>
<td>Reprinted</td>
<td>incorporating Amendments 4, 5 and 6 – September 2003</td>
</tr>
<tr>
<td>Amendment 7</td>
<td>Published 30 June 2010 Effective from 30 September 2010</td>
</tr>
<tr>
<td>Erratum 1</td>
<td>30 September 2010</td>
</tr>
<tr>
<td>Amendment 8</td>
<td>Effective from 10 October 2011 until 14 August 2014</td>
</tr>
<tr>
<td>Amendment 9</td>
<td>14 February 2014 until 30 May 2017</td>
</tr>
</tbody>
</table>

Note: Page numbers relate to the document at the time of Amendment and may not match page numbers in current document.
<table>
<thead>
<tr>
<th>Date</th>
<th>Alterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amendment 10</td>
<td>Effective 1 January 2017</td>
</tr>
<tr>
<td></td>
<td>pp. 7, 8 References</td>
</tr>
<tr>
<td></td>
<td>p. 12 Table 1</td>
</tr>
<tr>
<td></td>
<td>p. 31 9.0.6</td>
</tr>
</tbody>
</table>
New Zealand Building Code
Clause E1 Surface Water

The mandatory provisions for building work are contained in the New Zealand Building Code (NZBC), which comprises the First Schedule to the Building Regulations 1992. The relevant NZBC Clause for Surface Water is E1.

<table>
<thead>
<tr>
<th>Provisions</th>
<th>Limits on application</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTIVE</td>
<td></td>
</tr>
<tr>
<td>E1.1 The objective of this provision is to:</td>
<td></td>
</tr>
<tr>
<td>(a) Safeguard people from injury or illness, and other property from damage, caused by surface water, and</td>
<td></td>
</tr>
<tr>
<td>(b) Protect the outfalls of drainage systems.</td>
<td></td>
</tr>
<tr>
<td>FUNCTIONAL REQUIREMENT</td>
<td></td>
</tr>
<tr>
<td>E1.2 Buildings and sitework shall be constructed in a way that protects people and other property from the adverse effects of surface water.</td>
<td></td>
</tr>
<tr>
<td>PERFORMANCE</td>
<td></td>
</tr>
<tr>
<td>E1.3.1 Except as otherwise required under the Resource Management Act 1991 for the protection of other property, surface water, resulting from an event having a 10% probability of occurring annually and which is collected or concentrated by buildings or sitework, shall be disposed of in a way that avoids the likelihood of damage or nuisance to other property.</td>
<td></td>
</tr>
<tr>
<td>E1.3.2 Surface water, resulting from an event having a 2% probability of occurring annually, shall not enter buildings.</td>
<td></td>
</tr>
<tr>
<td>E1.3.3 Drainage systems for the disposal of surface water shall be constructed to:</td>
<td></td>
</tr>
<tr>
<td>(a) Convey surface water to an appropriate outfall using gravity flow where possible,</td>
<td></td>
</tr>
<tr>
<td>(b) Avoid the likelihood of blockages,</td>
<td></td>
</tr>
<tr>
<td>(c) Avoid the likelihood of leakage, penetration by roots, or the entry of ground water where pipes or lined channels are used,</td>
<td></td>
</tr>
</tbody>
</table>

Performance E1.3.2 shall apply only to **Housing, Communal Residential** and **Communal Non-residential buildings**.
(d) Provide reasonable access for maintenance and clearing blockages,

(e) Avoid the likelihood of damage to any outfall, in a manner acceptable to the network utility operator, and

(f) Avoid the likelihood of damage from superimposed loads or normal ground movements.
Contents

<table>
<thead>
<tr>
<th>References</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definitions</td>
<td>9</td>
</tr>
<tr>
<td>Verification Method E1/VM1</td>
<td>11</td>
</tr>
<tr>
<td>1.0 Scope</td>
<td></td>
</tr>
<tr>
<td>2.0 Estimation of Surface Water Run-off</td>
<td>11</td>
</tr>
<tr>
<td>2.1 Run-off coefficient</td>
<td>12</td>
</tr>
<tr>
<td>2.2 Rainfall intensity</td>
<td>12</td>
</tr>
<tr>
<td>2.3 Time of concentration</td>
<td>13</td>
</tr>
<tr>
<td>3.0 Sizing of Surface Water System</td>
<td>16</td>
</tr>
<tr>
<td>3.1 Minimum size of drains</td>
<td>16</td>
</tr>
<tr>
<td>3.2 Hydraulic design</td>
<td>16</td>
</tr>
<tr>
<td>3.3 Pipe materials</td>
<td>17</td>
</tr>
<tr>
<td>4.0 Secondary Flow</td>
<td>17</td>
</tr>
<tr>
<td>4.1 Secondary flow from a piped surface water drainage system upstream of the site</td>
<td>18</td>
</tr>
<tr>
<td>4.2 Secondary flow from an open water course upstream of the site</td>
<td>24</td>
</tr>
<tr>
<td>4.3 Secondary flow from site to downstream drainage system</td>
<td>27</td>
</tr>
<tr>
<td>5.0 Energy Losses Through Structures</td>
<td>27</td>
</tr>
<tr>
<td>6.0 Minimum Velocity</td>
<td>27</td>
</tr>
<tr>
<td>7.0 Outfall Protection</td>
<td>29</td>
</tr>
<tr>
<td>8.0 Drain Leakage Tests</td>
<td>29</td>
</tr>
<tr>
<td>8.1 Water test</td>
<td>29</td>
</tr>
<tr>
<td>8.2 Low pressure air test</td>
<td>29</td>
</tr>
<tr>
<td>8.3 High pressure air test</td>
<td>30</td>
</tr>
<tr>
<td>9.0 Disposal to soak pit</td>
<td>30</td>
</tr>
<tr>
<td>Acceptable Solution E1/AS1</td>
<td>33</td>
</tr>
<tr>
<td>1.0 Limitations of the Solution</td>
<td>33</td>
</tr>
<tr>
<td>2.0 Minimum Acceptable Floor Level</td>
<td>33</td>
</tr>
<tr>
<td>3.0 Drainage System Materials and Construction</td>
<td>34</td>
</tr>
<tr>
<td>3.1 Materials</td>
<td>34</td>
</tr>
<tr>
<td>3.2 Sizing of drains</td>
<td>34</td>
</tr>
<tr>
<td>3.3 Alignment and gradient of drains</td>
<td>34</td>
</tr>
<tr>
<td>3.4 Minimum gradients</td>
<td>34</td>
</tr>
<tr>
<td>3.5 Jointing of drains</td>
<td>36</td>
</tr>
<tr>
<td>3.6 Surface water inlets to drains</td>
<td>36</td>
</tr>
<tr>
<td>3.7 Access for maintenance</td>
<td>37</td>
</tr>
<tr>
<td>3.8 Testing of drains</td>
<td>39</td>
</tr>
<tr>
<td>3.9 Bedding and backfilling</td>
<td>39</td>
</tr>
<tr>
<td>4.0 Downpipes</td>
<td>42</td>
</tr>
<tr>
<td>4.1 Materials</td>
<td>42</td>
</tr>
<tr>
<td>4.2 Sizing of downpipes</td>
<td>42</td>
</tr>
<tr>
<td>4.3 Installation of downpipes</td>
<td>42</td>
</tr>
<tr>
<td>5.0 Roof Gutters</td>
<td>42</td>
</tr>
<tr>
<td>5.1 Size of roof gutter</td>
<td>42</td>
</tr>
<tr>
<td>5.2 Materials</td>
<td>44</td>
</tr>
<tr>
<td>5.3 Gradients</td>
<td>44</td>
</tr>
<tr>
<td>5.4 Thermal movement</td>
<td>44</td>
</tr>
<tr>
<td>5.5 Overflow outlets</td>
<td>44</td>
</tr>
<tr>
<td>Appendix A</td>
<td></td>
</tr>
<tr>
<td>Rainfall intensities</td>
<td>45</td>
</tr>
<tr>
<td>Index</td>
<td>47</td>
</tr>
</tbody>
</table>
References

For the purposes of New Zealand Building Code (NZBC) compliance, the Standards and documents referenced in this Verification Method and Acceptable Solution (primary reference documents) must be the editions, along with their specific amendments, listed below. Where these primary reference documents refer to other Standards or documents (secondary reference documents), which in turn may also refer to other Standards or documents, and so on (lower-order reference documents), then the version in effect at the date of publication of this Verification Method and Acceptable Solution must be used.

Where quoted

Standards New Zealand

NZS/BS 970:- Specification for wrought steels for mechanical and allied engineering purposes
Part 1: 1991 General inspection and testing procedures and specific requirements for carbon, carbon manganese, alloy and stainless steels
Amend: 1

AS/NZS 1254: 2010 PVC pipes and fittings for stormwater and surface water applications
Amend: 1, 2

AS/NZS 1260: 2009 PVC-U Pipes and fittings for drain, waste and vent application
Amend: 1, 2

AS/NZS 1734: 1997 Aluminium and aluminium alloys – Flat sheets, coiled sheet and plate

AS/NZS 2032: 2006 Installation of PVC Pipe Systems
Amend: 1

AS/NZS 2033: 2008 Installation of polyethylene pipe systems
Amend: 1, 2

AS/NZS 2280: 2014 Ductile iron pipes and fittings
Amend: 1

AS/NZS 2566 Buried Flexible pipelines.
Part 1: 1998 Structural Design
Part 2: 2002 Installation
Amend: 1

NZS 3604: 2011 Timber framed buildings
Amend: 1, 4, 7, 8, 9

AS/NZS 4058: 2007 Precast concrete pipes (pressure and non-pressure)

AS/NZS 4130: 2009 Polyethylene (PE) pipes for pressure applications
Amend: 1
NZS 4229: 2013 Concrete masonry buildings not requiring specific design

NZS 4442: 1988 Welded steel pipes and fittings for water, sewage and medium pressure gas

AS/NZS 5065: 2005 Polyethylene and polypropylene pipe and fittings for drainage and sewerage applications Amend: 1

British Standards Institution

BS EN 1172: 1997 Copper and copper alloys – sheet and strip for building

Standards Association of Australia

AS 1273: 1991 Unplasticised PVC (UPVC) downpipes and fittings for rainwater

AS 1397: 2001 Steel sheet and strip – Hot-dipped zinc-coated or aluminium/zinc-coated

AS 1579: 2001 Arc welded steel pipes and fittings for water and waste water

AS 1646: 2007 Elastomeric seals for waterworks purposes

AS 1741: 1991 Vitrified clay pipes and fittings with flexible joints – sewerage quality

AS 3706:- Geotextiles – Methods of test Part 1: 2003 General requirements, sampling, conditioning, basic physical properties and statistical analysis

New Zealand Legislation

Resource Management Act 1991

Where quoted

AS1 3.9.7

AS1 Table 1, Table 3

AS1 Table 1

AS1 Table 4, Table 6

AS1 Table 3

AS1 Table 4, Table 6

AS1 Table 1

AS1 Table 3

AS1 Table 1

VM19.0.4

VM12.1.2
Definitions

This is an abbreviated list of definitions for words or terms particularly relevant to this Verification Method and Acceptable Solution. The definitions for any other italicised words may be found in the New Zealand Building Code Handbook.

Access chamber A chamber with working space at drain level through which the drain passes either as an open channel or as a pipe incorporating an inspection point.

Building has the meaning given to it by sections 8 and 9 of the Building Act 2004.

Construct in relation to a building, includes to build, erect, prefabricate, and relocate; and construction has a corresponding meaning.

Drain A pipe normally laid below ground level including fittings and equipment and intended to convey foul water or surface water to an outfall.

Inspection chamber A chamber with working space at ground level through which the drain passes either as an open channel or as a pipe incorporating an inspection point.

Inspection point A removable cap at drain level through which access may be made for cleaning and inspecting the drainage system.

Network utility operator means a person who:
(a) undertakes or proposes to undertake the distribution or transmission by pipeline of natural or manufactured gas, petroleum, biofuel, or geothermal energy; or
(b) operates or proposes to operate a network for the purpose of
(i) telecommunication as defined in section 5 of the Telecommunications Act 2001; or
(ii) radiocommunications as defined in section 2(1) of the Radiocommunications Act 1989; or
(c) is an electricity operator or electricity distributor as defined in section 2 of the Electricity Act 1992 for the purpose of line function services as defined in that section; or
(d) undertakes or proposes to undertake the distribution of water for supply (including irrigation); or
(e) undertakes or proposes to undertake a drainage or sewerage system.

Other property means any land or buildings or part thereof which are:
a) Not held under the same allotment; or
b) Not held under the same ownership – and includes any road.

Outfall That part of the disposal system receiving surface water or foul water from the drainage system. For foul water, the outfall may include a foul water sewer or a septic tank. For surface water, the outfall may include a natural water course, kerb and channel, or a soakage system.

Rodding point A removable cap at ground level through which access may be made for cleaning and inspecting the drainage system.

Secondary flow path The path over which surface water will follow if the drainage system becomes overloaded or inoperative.

Sewer A drain that is under the control of, or maintained by, a network utility operator.

Sitework means work on a building site, including earthworks, preparatory to or associated with the construction, alteration, demolition or removal of a building.

Sump A chamber which is installed in the drain and incorporates features to intercept and retain silt, gravel and other debris.

Surface water All naturally occurring water, other than sub-surface water, which results from rainfall on the site or water flowing onto the site, including that flowing from a drain, stream, river, lake or sea.
Territorial authority (TA) means a city council or district council named in Part 2 of Schedule 2 of the Local Government Act 2002; and—

a) in relation to land within the district of a territorial authority, or a building on or proposed to be built on any such land, means that territorial authority; and

b) in relation to any part of a coastal marine area (within the meaning of the Resource Management Act 1991) that is not within the district of a territorial authority, or a building on or proposed to be built on any such part, means the territorial authority whose district is adjacent to that part.

Trap A chamber which is installed in the drain and incorporates features to intercept and retain floatable debris.
1.0 Scope

1.0.1 This Verification Method shall be used only if the territorial authority does not have more accurate data available from sophisticated hydrological modelling of the catchment undertaken as part of its flood management plans.

1.0.2 The following approach provides a method for verifying that a proposed building will meet the requirements of NZBC E1.3.1 and E1.3.2 in the following circumstances:

a) The catchment area does not exceed 100 ha (but see Paragraph 1.0.6 for soak pits), and

b) The surface water results only from rainfall on the catchment and does not include water from other sources such as inundation from rivers, lakes or the sea.

1.0.3 The method describes how to determine:

a) The volume of surface water arriving at the building site from upper areas of the catchment (see Paragraph 2.0),

b) The size of drains necessary to remove surface water from the building site (see Paragraph 3.0), and

c) The nature and volume of secondary flows likely to reach the building from overloaded culverts, drains or open channels in the upper catchment (see Paragraph 4.0).

1.0.4 The procedure described for sizing drains only applies where free flow occurs at the outlet. The outlet must not be restricted by hydraulic impediments such as control gates, a pump station, or submerged outlets in a river, a lake or the sea.

1.0.5 A method is provided for determining appropriate outfall protection.

1.0.6 A procedure is provided for determining soak pit requirements for surface water disposal. Such disposal is subject to suitable ground conditions, as confirmed by site tests.

COMMENT:
1. Where soak pits are used the overall ground stability may need to be verified but this is outside of the scope of this Verification Method.
2. Soak pit surface water disposal may require a resource management consent.

1.0.7 The design procedures in this document must be performed by a person who, on the basis of experience or qualifications, is competent to apply them.

1.0.8 This document makes no allowance for blockages to the intakes of drains or culverts. The procedures of this document shall only be used where the designer demonstrates that this approach is justified for the particular building work under consideration.

COMMENT:
The likelihood of blockage and the resulting risks will vary from project to project and need to be considered by the designer before applying this document.

1.0.9 The “Comments” in this document provide comment, background or general information but do not form part of this Verification Method.

2.0 Estimation of Surface Water Run-Off

2.0.1 Surface water run-off for the catchment shall be calculated using the Rational Method. The formula to be used is:

\[Q_c = \frac{CIA_c}{360} \]

where

\[Q_c \] = catchment run-off (m³/s),

\[C \] = run-off coefficient (see Table 1),

\[I \] = rainfall intensity (mm/hr).

\[A_c \] = area (hectares) of catchment above the point being considered.
2.1 Run-off Coefficient

2.1.1 Table 1 lists run-off coefficients appropriate to a variety of land uses and soil characteristics. For catchments having a mixture of different types, the run-off coefficient shall be determined by averaging the value for individual parts of the catchment by using the formula:

\[C = \frac{\sum C_i A_i}{A_c} \]

where

- \(C \) = the run-off coefficient for the catchment.
- \(C_i \) = the run-off coefficient for a particular land use.
- \(A_i \) = the area of land to which \(C_i \) applies.
- \(A_c \) = the catchment area.

COMMENT:
1. The run-off coefficient \(C \) is the variable in the rational formula least able to be precisely determined, and represents the integrated effects of such things as infiltration, storage, evaporation, natural retention and interception, all of which affect the time distribution and peak rate of run-off.
2. The run-off coefficients given in Table 1 assume saturated ground conditions from previous rain, and shall be used in the calculation of surface water run-off.

2.1.2 The chosen run-off coefficient shall be based on the conditions likely to exist after the full catchment development allowable by the operative plan under the Resource Management Act 1991.

2.1.3 Slope correction

The values of run-off coefficient given in Table 1 shall be adjusted for slope in accordance with Table 2.

COMMENT:
The values in Table 1 assume an average sloping terrain of 5-10% (i.e. gently rolling). However, if the terrain is flatter or steeper this will have the effect of slowing down or speeding up overland flow. The above adjustment allows for this.

2.2 Rainfall intensity

2.2.1 The rainfall intensity shall be that for a storm having a duration equal to the time of concentration as determined by Paragraph 2.3.1, and a probability of occurrence as given by NZBC E1.3.1 or E1.3.2 as appropriate.

Either local rainfall intensity curves produced by the territorial authority or rainfall frequency
duration information produced by NIWA shall be used to determine the rainfall intensity.

COMMENT:
Rainfall intensity curves are available for most areas. These have been developed from meteorological data. Rainfall frequency-duration tables for each official rain gauge throughout New Zealand are also available. Rainfall frequency duration data is also available from NIWA, in digital form, as HIRDS (High Intensity Rainfall Design System).

2.3 Time of concentration

2.3.1 The time of concentration used to determine rainfall intensity is the time taken for surface water run-off from the furthest point (in time) of the catchment to reach the design point. Flow time calculations shall take account of catchment run-off coefficients and slopes.

Time of concentration for the catchment t_c (minutes) shall be calculated from the formula:

$$t_c = t_e + t_f$$

but shall be no less than 10 minutes.

Where

- t_e = time of entry (minutes) which is the run-off time for overland travel (i.e. via ground, roofs, downpipes, carriageways or road channels) to the point of entry to a drain or open channel.
- t_f = time (minutes) of network flow, (comprising flow in pipes and open channels), to the design point.

2.3.2 Time of entry t_e

The time of entry t_e:

a) Where the catchment area has a well defined and regularly repeated pattern for directing the surface water to the drain or open channel, the time of entry may be taken as:

$$t_e = 5 \text{ minutes} \quad \text{for commercial or industrial areas where greater than 50% of the surface of the catchment area feeding the drain or open channel consists of roofed, asphalt, concrete, paved or metalled surfaces.}$$

$$t_e = 7 \text{ minutes} \quad \text{for residential areas where the impervious area exceeds 50% of gross area.}$$

$$t_e = 10 \text{ minutes} \quad \text{for low density residential areas where the impervious area is 36% to 50% of gross area.}$$

b) Where the catchment does not have a well defined and regularly repeated pattern or where the catchment is longer than 1.0 km, the time of entry t_e shall be the sum of the time of overland flow and, if applicable, the time of road channel flow as given in i) and ii) below:

i) the time of overland flow shall be determined by the formula:

$$t = 100 n L^{0.33}/s^{0.2}$$

where

- $t = \text{time (minutes)}$.
- $L = \text{length of overland flow (m)}$.
- $s = \text{slope (})$.
- $n = \text{Manning’s ‘n’ (roughness coefficient)}$.

Table 2: Slope Correction for Run-off Coefficients

<table>
<thead>
<tr>
<th>Ground slope</th>
<th>Adjust C by:</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5%</td>
<td>subtracting</td>
<td>0.05</td>
</tr>
<tr>
<td>5-10%</td>
<td>no adjustment</td>
<td></td>
</tr>
<tr>
<td>10-20%</td>
<td>adding 0.05</td>
<td></td>
</tr>
<tr>
<td>20% or steeper</td>
<td>adding 0.10</td>
<td></td>
</tr>
</tbody>
</table>

COMMENT:
In some catchments due to shape, surface water network and varying permeabilities within the catchment, part of the catchment under consideration may produce a higher peak flow than the whole of the catchment. Although the area for the part catchment is smaller, this may be more than offset by the higher intensity storm associated with a shorter time of concentration and storm duration. This situation will generally arise where the lower reaches of a catchment are densely developed.
The results from this formula, for normal surface types, are shown in Figure 1.

ii) The time of road channel flow, which is the time taken for water to flow from the point of entering the road channel, to the point of discharge to a sump, catchpit, drain or other outlet, shall be determined from Figure 2.

2.3.3 Time of network flow
The time of network flow t_n shall be determined from the sum of the travel times within pipes and open channels.

2.3.4 Time of pipe flow
The time of pipe flow shall be calculated from the velocity as determined from Figure 3. Where the pipe changes in material, diameter or gradient the time taken in each section of the pipe shall be calculated and the component times summed. For pipes with Manning’s ‘n’ other than 0.013 the velocity determined from Figure 3 shall be multiplied by the ratio of 0.013/n. Other values of Manning's ‘n’ for different pipe materials are given in Table 3.

Example: For a slope of 1.4% and a road channel length of 70 metres the time of road channel flow is 1.7 minutes
Figure 3: Pipe Flow Relationships for Different Combinations of Internal Diameter, Velocity and Gradient
(Based on Manning’s formula using n = 0.013 with an allowance for air entrainment)
Paragraphs 2.3.4 and 3.2.1

Example: A 450 internal diameter pipe with a gradient of 1 in 20 will have a flow of 0.63 m³/s at a velocity of 3.75 m/s
2.3.5 Time of open channel flow

The time of flow in open channels (either watercourses or lined channels), shall be calculated by means of Manning’s formula as given by Paragraph 3.0.

2.3.6 Alternative method to determine time of concentration

Where there are significant changes in gradient along the channel slope or where the open channel is in a rural area, the time of concentration \(t_c \) may be determined from:

\[
t_c = 0.0195 \left(\frac{L^3}{H} \right)^{0.385}
\]

where

- \(t_c \) = time of concentration (minutes).
- \(L \) = length of catchment (m) measured along the flow path.
- \(H \) = rise from bottom to top of catchment (m).

2.3.7 If the actual catchment slope varies significantly from the value \(H/L \) (e.g. with a sudden steepening in the upper reaches) the average slope and height \(h \) shall be determined from the equal areas method shown in Figure 4. Height \(h \) shall be substituted for \(H \) in the formula.

3.0 Sizing of Surface Water System

3.1 Minimum size of drains

3.1.1 To avoid blockages, surface water drains shall have an internal diameter of no less than 85 mm.

3.1.2 Except as allowed by Paragraph 5.0.2, the internal diameter of a drain shall not decrease in size in the direction of flow.

3.2 Hydraulic design

3.2.1 The cross-sectional area of the drain conveying surface water run-off \(Q_c \) to the outfall shall be determined by:

\[
A_p = \frac{Q_c}{v}
\]

where

- \(A_p \) = cross-sectional area of drain \((m^2) \).
- \(Q_c \) = surface water run-off \((m^3/s) \).
- \(v \) = flow velocity \((m/s) \).

The flow velocity \(v \) shall be determined from Manning’s formula:

\[
v = R^{2/3} S^{1/2} n^{-1}
\]

where

- \(R \) = hydraulic radius \((m) = A_p/P \).
- \(P \) = wetted perimeter of the cross-section of the flow \((m) \).
- \(S \) = slope = vertical rise/horizontal distance.
- \(n \) = Manning’s ‘n’ (roughness coefficient). See Table 3.

Where the drain is to be constructed using a piped section, Figure 3 may be used to determine pipe size instead of the above calculation procedure. Where the pipe material has a Manning’s ‘n’ of 0.013, Figure 3 can be used directly. For other values of Manning’s ‘n’, the flow in the pipe \(Q_p \) shall be modified...
by multiplying it by the ratio of n/0.013 before entering the Figure.

3.2.2 The designer shall estimate the headwater depth H_w (height of water level above inlet invert, refer to Figure 5 (a)) for the size of drain (determined from Paragraph 3.2.1), and confirm that there is sufficient ground depth available at the inlet to the drain to contain H_w without causing flooding to the building site or secondary flow from the inlet. If there is insufficient depth to contain the headwater the drain size shall be increased until H_w is less than the ground depth available at the drain inlet.

3.2.3 The headwater depth H_w (m) for the drain shall be determined from:

a) Figure 6 for a circular piped system, or

b) Figure 7 for a box culvert system.

3.2.4 Where a drain gradient exceeds 1 in 10 an allowance for the bulking of the flow due to air entrainment shall be made by multiplying the area of the pipe by:

$$(1 + \frac{kv^2}{gR})$$

where

$k = \text{coefficient of entrainment}$

$\begin{align*}
&= 0.004 \text{ for smooth concrete pipes, or} \\
&= 0.008 \text{ for cast-in-situ concrete culverts.}
\end{align*}$

$v = \text{flow velocity (m/s).}$

$R = \text{hydraulic radius (m).}$

$g = \text{acceleration due to gravity} = 9.8 \text{ m/s}^2.$

3.3 Pipe materials

Pipe materials shall comply with Table 1 of acceptable solution E1/AS1.

4.0 Secondary Flow

4.0.1 Secondary flow occurs where surface water arrives at the site from an overflowing drainage system upstream in the catchment. Where there is a drainage system, being a pipe, culvert or open water course, upstream of the building site, the potential for a
secondary flow path between the drainage system and the site shall be assessed. This shall involve determination of the capacity of the drainage system in conjunction with assessment of the ground levels in the general area.

COMMENT:
Secondary flow is not likely to cause flooding at the building site if the surface water run-off from the catchment above the site is less than 0.3 m3/s unless the site is in a depression capable of ponding water.

4.1 Secondary flow from a piped surface water drainage system upstream of the site

4.1.1 This method applies to the assessment of secondary flow upstream of inlet controlled, and some outlet controlled, pipes and culverts (see Figure 5), provided that free flow occurs at the outlet (i.e. the outlet is not restricted by hydraulic obstructions such as control gates, a pump station or submerged outlets in a river or lake).

4.1.2 The method does not apply to outlet controlled pipes or culverts where the tailwater depth T_w (m) is less than the height D (m) of the pipe or culvert (see Figure 5 (f)) i.e. outlet not flowing full, and where the estimated headwater depth H_w (m) is no greater than 0.75 D. Such situations shall be subject to specific design.

4.1.3 The headwater depth H_w shall be determined for both the inlet and outlet controlled flow conditions and the maximum value shall be used to assess secondary flow.

4.1.4 Assessment of H_w for inlet controlled pipe or culverts, see Figures 5 (a) and (b)

The headwater depth H_w for a system with inlet control shall be determined from:

a) Figure 6 for a circular piped system, or
b) Figure 7 for a box culvert system.

4.1.5 Assessment of H_w for outlet controlled pipes or culverts, see Figures 5 (c), (d) and (e)

The tailwater depth T_w shall be determined from Paragraphs 4.1.6 and 4.1.7, and the headwater depth H_w from Paragraph 4.1.8.

4.1.6 Tailwater depth T_w (m) shall be calculated by an iterative process from the formula:

$$Q_c = A_f S^{1/2} R^{2/3}/n$$

where

- Q_c = catchment surface water run-off or that portion arriving at the pipe or culvert (m3/s).
- A_f = cross-sectional area of the flow immediately downstream of the pipe or culvert outlet (m2).
- S = slope of the stream (vertical fall/horizontal distance) immediately downstream of the outlet.
- R = hydraulic radius of the stream (m) = A_f/P.
- P = wetted perimeter (m) of the stream flow.
- n = Manning’s ‘n’ (roughness coefficient).

See Table 3.

4.1.7 Firstly a tailwater depth T_w (m) is assumed and, from knowledge of the stream cross-section, the corresponding values of A_f, P and R are determined. These values are then used in the above formula to calculate Q_c which is compared to the actual value of Q_c known to arrive at the pipe. If the calculated value of Q_c is less than the actual value then the assumed tailwater depth shall be increased and the value of Q_c recalculated. The procedure shall be repeated until such time as the tailwater depth T_w used gives two values of Q_c that agree.

If $T_w < D$ then T_w shall be this value or $(d_c + D)/2$ whichever is the greater, where:

- d_c = critical depth (m) and is determined by Figures 8 and 9.
- D = internal pipe diameter (m) for Figure 8.
- B = culvert width (m) for Figure 9.
Figure 5: Pipe Flow Conditions for Inlet and Outlet Control
Paragraphs 3.2.2, 4.1.1, 4.1.2, 4.1.4 and 4.1.5

(a) Unsubmerged

(b) Submerged

INLET CONTROL

(c)

(d)

OUTLET CONTROL

(e)

(f)
Figure 6: Headwater Depth for Circular Pipes
Paragraphs 3.2.3 a) and 4.1.4 a)

Example

\[D = 1.2 \text{m} \]
\[Q = 5.0 \text{m}^3/\text{s} \]

\[\frac{H_w}{D} \]

(1) 2.8 3.4
(2) 2.3 2.8
(3) 2.4 2.9

Choose \(\frac{H_w}{D} \) scale to suit entrance type.

Scale
1. (1) Square edge with headwall
2. (2) Socket end with headwall
3. (3) Socket end projecting

To use scale (2) or (3) project horizontally from scale (1).

\[H_w \text{ (m)} \]

Choose scale to suit entrance type.

Scale
1. (1) Square edge with headwall
2. (2) Socket end with headwall
3. (3) Socket end projecting

To use scale (2) or (3) project horizontally from scale (1).
Example
\[D = 0.6m\]
\[Q/B = 1.40m^3/s\]
\[H = \frac{H_e}{D}\]

\begin{array}{|c|c|}
\hline
(1) & 1.75 & 1.05 \\
(2) & 1.90 & 1.14 \\
(3) & 2.10 & 1.26 \\
\hline
\end{array}

Choose \(\frac{H_e}{D}\) scale to suit wingwall flare.

Scale Flare
(1) 30° to 75°
(2) 15° to 29° and 76° to 90°
(3) 0° to 14°

To use scale (2) or (3) project horizontally from scale (1).
4.1.8 The headwater depth H_w (m) shall be calculated by:

$$H_w = H + T_w - LS,$$

where

- T_w = tailwater depth (m).
- H = downstream head (m).
- L = length of the pipe or culvert (m).
- S = slope of the pipe or culvert (vertical fall/horizontal distance) with the vertical fall being measured between the intake and outlet invert levels. If gravels or sand are present in the pipe or culvert then the surface of the gravel or sand shall be taken as the invert level.
- v = flow velocity in the pipe or culvert (m/s).
- k_e = entrance loss coefficient as given by Table 4.

$$Q_c = \text{catchment surface water run-off or that portion arriving at the pipe (m}^3/\text{s}).$$

$$n = \text{Manning's 'n' (roughness coefficient) as given in Table 3.}$$

$$R = \text{hydraulic radius (m).}$$

$$A_p = \text{cross-sectional area of the pipe or culvert (m}^2).$$

4.1.9 As an alternative to the formula given in Paragraph 4.1.8, Figures 10 and 11 may be used directly to determine downstream H applying the values of Manning's 'n' and k_e given in those Figures.

4.1.10 Determination of secondary flow quantity

The estimated water surface level, determined from H_w (m), is the actual water surface if all the surface water run-off Q_c (m3/s) flows through the pipe or culvert. This level shall be compared to the ground levels upstream of the pipe intake to determine if a possible secondary flow path exists. If the ground level upstream of the intake is higher than the
water surface level (H_w) no secondary flow will occur. If the water surface is higher than the ground level upstream of the intake and the ground contours provide a secondary flow path between the possible overflow point and the building site, an estimate of the secondary flow volume likely to arrive at the site shall be made using the formula:

\[Q_c = Q_p + Q_{sf} \]

where \(Q_p \) and \(Q_{sf} \) (m³/s) are determined from an iterative process where:

\[Q_p = \text{flow in the pipe or culvert determined from Paragraphs 4.1.4 and 4.1.5 using an assumed headwater surface level } H_w \text{ which allows for secondary flow, and} \]

\[Q_{sf} = \text{the secondary flow down the secondary flow path corresponding to the assumed headwater surface level } H_w. \]

\(Q_{sf} \) shall be determined from Paragraph 4.1.11 provided there is no restriction downstream of the secondary flow overflow point which could cause a backwater effect on either \(Q_p \) or \(Q_{sf} \) capable of ponding water to a height sufficient to reach the level of \(H_w \). Specific design is required where such restrictions occur.

If the summation of \(Q_p \) and \(Q_{sf} \) is less than \(Q_c \) then a higher \(H_w \) shall be used to recalculate \(Q_p \) and \(Q_{sf} \). If it is greater than \(Q_c \) then a lower \(H_w \) shall be used to recalculate \(Q_p \) and \(Q_{sf} \). The designer shall refine the water surface level \(H_w \) until \(Q_c = Q_p + Q_{sf} \).
The secondary flow Q_{sf} shall be determined from a) or b) as appropriate.

a) Where the flow over the secondary flow point operates as a weir (such as a flow over a culvert headwall, kerb, footpath, crown in the road, driveway entrance, etc.) then Q_{sf} shall be determined by:

$$Q_{sf} = 1.6 \ B \ H_{sf}^{3/2}$$

where

- Q_{sf} = secondary flow (m3/s).
- B = width (metres) of the secondary flow path at the point of overflow over the weir, from the channel to the secondary flow path.
- H_{sf} = secondary flow water depth (metres), being the difference between the assumed headwater surface level H_w and the average ground level over width B, at the point of overflow into the secondary flow path.

b) Where the flow over the secondary flow point operates as a pipe or channel flow (such as directly down a side channel or pipe) then Q_{sf} shall be determined by:

$$Q_{sf} = A_{sf} R_{sf}^{2/3} S_{sf}^{1/2} n_{sf}^{-1}$$

where

- Q_{sf} = secondary flow (m3/s).
- A_{sf} = cross-sectional area (m2) of the flow down the secondary flow channel or pipe.
- R_{sf} = hydraulic radius (m) = A_{sf} / P_{sf}
- P_{sf} = wetted perimeter (m) of the cross-section of the secondary flow in the channel or pipe.
- S_{sf} = slope of the ground (vertical fall/horizontal distance) along the secondary flow path at the overflow point.
- n_{sf} = Manning’s ‘n’ (roughness coefficient). See Table 3.

4.2 Secondary flow from an open water course upstream of the site

4.2.1 Where the surface run-off from a catchment at a possible overflow point Q_c is flowing at subcritical flow, i.e. where:

$$v_c < (gH_c)^{0.5}$$

where

- v_c = velocity (m/s) in the stream at the possible overflow point.
- H_c = depth of flow (m) in the stream at the possible overflow.

then an assessment of secondary flow Q_{sf} shall be made by the procedure set out below. If the surface run-off from the catchment, at the possible overflow point Q_c is flowing at super critical flow (i.e. $v_c > (gH_c)^{0.5}$) then specific design shall be used to assess Q_{sf}.

Continued on page 27
Example

D = 1.20m
k_e = 0.5
L = 32.0m
Q = 1.95m^3/s

Join L with internal pipe diameter and pivot on turning line to find H = 0.29m, for Q = 1.95m^3/s.

Notes

(a) Mannings 'n'
This figure uses n=0.013. For a different value of n use the length scale with an adjusted length
L_1 = L(n_1/n)^2

(b) For values of k_e between 0.2 and 0.7, connect the given length on adjacent scales by a straight line and interpolate.
Figure 11: Downstream Head for Box Culverts
Paragraph 4.1.9

Example

0.6m x 0.6m culvert = 0.36m2
$k_v = 0.7$
$L = 69.0m$
$Q = 1.2m3/s$

Join L with culvert area and pivot on turning line to find $H = 2.25m$, for $Q = 1.2m^3/s$.

Notes

(a) Mannings 'n'
This figure uses $n=0.013$. For a different value of n use the length scale with an adjusted length $L_1 = L(n'/n)^2$.

(b) For values of k_v between 0.2 and 0.7, connect the given length on adjacent scales by a straight line and interpolate.
Secondary flow from an open water course upstream of the site shall be determined by an iterative process similar to that described in Paragraph 4.1.10 for pipes and culverts but using the formula:

\[Q_c = Q_{strm} + Q_{sf} \]

where

\[Q_c = \text{surface run-off from catchment upstream of possible overflow point} \ (m^3/s), \]
\[Q_{strm} = \text{that portion of surface water run-off} \ (m^3/s) \text{ flow down the stream channel downstream of the possible overflow point, and} \]
\[Q_{sf} = \text{secondary flow from site to downstream drainage system} \]

\[Q_{strm} = R_{strm}^{2/3}S_{strm}^{1/2}n_{strm}^{-1}A_{strm} \]
where \(R_{strm} \) and \(A_{strm} \) are determined from an assumed water surface and
\[R_{strm} = \text{hydraulic radius of stream} \ (m) \text{ downstream of the possible overflow point.} \]
\[S_{strm} = \text{slope of stream} \ (\text{vertical fall/horizontal distance}) \text{ downstream of the possible overflow point.} \]
\[n_{strm} = \text{Manning’s ‘n’ (roughness coefficient).} \text{ See Table 3.} \]
\[A_{strm} = \text{cross-sectional area of the stream} \ (m^2), \] and
\[Q_{sf} = R_{sf}^{2/3}S_{sf}^{1/2}n_{sf}^{-1}A_{sf} \]
where \(R_{sf} \) and \(A_{sf} \) are determined from the secondary flow depth being the difference between the assumed water surface and the ground level at the point of overflow into the secondary flow path.

The designer shall refine the level of water surface until \(Q_c = Q_{strm} + Q_{sf} \).

4.3 Secondary flow from site to downstream drainage system

The level of the floor shall be set at the height of the secondary flow plus an allowance for freeboard. The freeboard shall be:

\(– \) 500 mm where \textit{surface water} has a depth of 100 mm or more and extends from the \textit{building} directly to a road or car park, other than a car park for a single dwelling.

\(– \) 150 mm for all other cases.

\textbf{COMMENT:}
The 500 mm freeboard allows for waves generated by vehicles. Such waves will not be sustained unless there is at least 100 mm depth of water and an unobstructed path from the point where the wave is generated to the \textit{building}.

5.0 Energy Losses Through Structures

\subsection{5.0.1} Hydraulic design shall make allowance for energy losses at \textit{access chamber} structures where a change in direction of the flow occurs. An additional fall shall be provided through the \textit{access chamber} to allow for these losses. This fall \(H_L \) (m) is in addition to the fall produced by the gradient of the pipe line, and shall be calculated using the formula:

\[H_L = \frac{Kv^2}{2g} \]

where
\[K = \text{energy loss coefficient for change in direction determined from Figure 12.} \]
\[v = \text{flow velocity} \ (m/s). \]
\[g = \text{gravitational acceleration} = 9.8 \text{ m/s}^2. \]

\subsection{5.0.2} In cases where a reduction in \textit{drain} size is justified by a large increase in gradient, an additional head loss of \(0.5 \frac{v_e^2}{2g} \) shall be allowed for (\(v_e = \text{exit velocity} \)). Such reductions in size are only permissible where the exit pipe has an internal diameter of 300 mm or greater.

6.0 Minimum Velocity

\subsection{6.0.1} A \textit{drain}, shall have a minimum flow velocity of 0.6 m/s when \textit{sumps} are incorporated and 0.9 m/s when no \textit{sumps} are used.
Figure 12: Energy Loss Coefficient
Paragraph 5.0.1

Pipe Diameter (mm)

Energy Loss Coefficient K for Change of Direction in 1050 Dia. Access Chamber

Change of Direction (degrees)
7.0 Outfall Protection

7.0.1 Unless more stringent requirements are imposed by the network utility operator, the following shall apply to the flow discharging from the site into the outfall:

a) The exiting velocity shall not exceed the values given in Table 5, and
b) Where the outfall is a pipe, culvert or stream, the volume discharged shall not exceed 20% of the flow in the outfall immediately upstream of the discharge point.

COMMENT:
1. The outfall, be it a pipe, culvert, stream, lake or the sea, needs to be protected from erosion or scour to meet the requirements of Clause E1.3.3 (e).
2. If exit velocities exceed those given in Table 5, protective structures to dissipate the energy and reduce the velocities are required. These require specific design which is outside the scope of this document.
3. Discharge to some outfalls will require a resource management consent.

8.0 Drain Leakage Tests

8.0.1 The materials and workmanship used in surface water drains shall pass one of the following tests:

a) Water test.
b) Low pressure air test.
c) High pressure air test.

8.0.2 Regardless of test method, the pipeline to be tested shall be sealed with suitably restrained plugs (at both ends and at all branch connections) and, where the pipe material is porous (such as ceramic or concrete), it shall be soaked for 24 hours prior to testing.

COMMENT:
Soaking is necessary as porous pipes can absorb water or transmit air through their walls.

8.1 Water test

a) Fill pipe with water, ensuring all air is expelled.
b) Top up water to test head level. The minimum head shall be 1.5 m above the top of the pipe or ground water level whichever is the higher. The maximum head at the lower end of the pipeline shall not exceed 6.0 m.
c) Leave for 30 minutes then measure water loss.
d) The pipeline is acceptable if water loss does not exceed 2 ml per hour, per mm of internal diameter, per m of pipeline length.

8.2 Low pressure air test

a) Introduce air to the pipeline until a pressure of 300 mm water gauge is reached. (This may be measured by a manometer such as a ‘U’ tube, connected to the system.)
b) Wait until the air temperature is uniform. (Indicated by the pressure remaining steady.)
c) Disconnect the air supply.
d) Measure pressure drop after 5 minutes.
e) The pipeline is acceptable if the pressure drop does not exceed 50 mm.

Table 5: Maximum Exit Velocities of Flow from Pipes and Culverts Discharging to Outfalls

<table>
<thead>
<tr>
<th>Outfall material</th>
<th>Velocity m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precast concrete pipes to NZS 3107</td>
<td>8.0</td>
</tr>
<tr>
<td>Precast concrete culverts</td>
<td>8.0</td>
</tr>
<tr>
<td>In-situ concrete and hard packed rock (300 mm minimum)</td>
<td>6.0</td>
</tr>
<tr>
<td>Beaching or boulders (250 mm minimum)</td>
<td>5.0</td>
</tr>
<tr>
<td>Stones (100-150 mm)</td>
<td>2.5 – 3.0</td>
</tr>
<tr>
<td>Grass covered surfaces</td>
<td>1.8</td>
</tr>
<tr>
<td>Stiff, sandy clay</td>
<td>1.3 – 1.5</td>
</tr>
<tr>
<td>Coarse gravel</td>
<td>1.3 – 1.8</td>
</tr>
<tr>
<td>Coarse sand</td>
<td>0.5 – 0.7</td>
</tr>
<tr>
<td>Fine sand</td>
<td>0.2 – 0.5</td>
</tr>
</tbody>
</table>

DEPARTMENT OF BUILDING AND HOUSING 1 December 2000
8.3 High pressure air test
a) Pressurise pipeline to 25 kPa.
b) Wait at least 2 minutes to ensure temperature stabilisation.
c) Disconnect air supply.
d) Measure the time taken (minutes) for the pressure to drop to 17 kPa.
e) The pipeline is acceptable if the time taken exceeds that given for the appropriate pipe size in Table 6.

9.0 Disposal to Soak Pit

9.0.1 Where the collected surface water is to be discharged to a soak pit, the suitability of the natural ground to receive and dispose of the water without causing damage or nuisance to neighbouring property, shall be demonstrated to the satisfaction of the territorial authority.

9.0.2 Field testing of soakage shall be carried out as follows:
a) Bore test holes of 100 mm to 150 mm diameter to the depth of the proposed soak pit. If groundwater is encountered in the bore test hole then this depth shall be taken as the depth of the soak pit.
b) Fill the hole with water and maintain full for at least 4 hours, (unless the soakage is so great that the hole completely drains in a short time).
c) Fill the hole with water to within 750 mm of ground level, and record the drop in water level against time, at intervals of no greater than 30 minutes, until the hole is almost empty, or over 4 hours, whichever is the shortest.
d) Plot the drop in water level against time on a graph, and the soakage rate in mm/hr is determined from the minimum slope of the curve. If there is a marked decrease in soakage rate as the hole becomes nearly empty, the lower rates may be discarded and the value closer to the average can be adopted.

9.0.3 The soak pit shall be designed utilising soakage and storage in accordance with 9.0.5 and 9.0.6 to ensure that surface water is discharged without overflowing. The rainfall intensity used in the design of the soak pit shall be that of an event having a duration of 1 hour and a 10% probability of occurring annually. Either local rainfall intensity curves produced by the territorial authority or rainfall frequency duration information produced by NIWA shall be used to determine the rainfall intensity.

COMMENT:
This Verification Method does not cover the design of soak pits with overflows discharging to outfalls. Such soak pits are often provided to retain water until peak flows in the outfall have passed and it is normally considered sufficient to design them for an event having a 10 minute duration and a 10% probability of occurring annually.

9.0.4 The soak pit shall comprise either a rock filled hole (see Figure 13 (a)) or a lined chamber (see Figure 13 (b)). Both of these options shall be enclosed in filter cloth
complying with AS 3706.1. The filter cloth shall have a mass per unit area of 140 grams/m² and a minimum thickness of 0.45 mm.

9.0.5 The volume of storage required in the soak pit, V_{stor} (m³), shall be calculated by:

$$V_{stor} = R_c - V_{soak}$$

where

$R_c =$ run-off discharged from catchment to soak pit in 1 hour (m³).

$V_{soak} =$ volume disposed of by soakage in 1 hour (m³).

and

$R_c = 10CIA$

where

$C =$ run-off coefficient (see Table 1).

$I =$ rainfall intensity (mm/hr) based on 1 hour duration of an event having a 10% probability of occurring annually.

$A =$ area (hectares) of the catchment discharging to the soak pit.

and

$V_{soak} = \frac{A_{sp}S_r}{1000}$

where

$A_{sp} =$ area of the base of the soak pit (m²).

$S_r =$ soakage rate (mm/hr) determined from 9.0.2.

COMMENT:

Generally where the test results show a soakage rate of greater than 500 mm/hour, soakage rather than storage will be the main mechanism to remove the water. Where the soakage rate is significantly less than 500 mm/hour, storage will become the dominant factor. Intermediate soakage rates will require a design utilising both in the proportions necessary to ensure the water will dissipate before it overflows from the pit.

9.0.6 Where the soak pit comprises a rock filled hole (see Figure 13 (a)) then the volume of the hole shall be calculated as V_{stor} divided by 0.38.
Figure 13: Soak Pit for Surface Water Disposal

Paragraph 9.0.4

(a) Rock soak pit

Pit sized to suit ground soakage and give adequate storage to avoid overflowing.
Rocks 100-150mm.
Filter cloth surrounding soakpit.

(b) Chamber soak pit

Chamber sized to suit ground soakage and give adequate storage to avoid overflowing.
Minimum 250mm layer of 100-150mm rocks in bottom of chamber.

Filter cloth around and beneath chamber.
Chamber with holes of 40-80mm dia. at 300mm centres each way.
Acceptable Solution E1/AS1

1.0 Limitations of the Solution

1.0.1 This Acceptable Solution is limited to buildings and sitework having a catchment area of no more than 0.25 hectares and which are:

a) Free from a history of flooding,
b) Not adjacent to a watercourse,
c) Not located in low lying area, and
d) Not located in a secondary flow path.

COMMENT:
Boundary fences and other site development must not significantly hamper the flow of surface water from the site.

2.0 Minimum Acceptable Floor Level

2.0.1 Suspended floors and slabs on ground shall be at least 150 mm above the finished level of the surrounding ground immediately adjacent to the building, and:

a) For sites level with or above the road, no less than 150 mm above the road crown on at least one cross-section through the building and roadway (see Figure 1).

b) For sites below the road, no less than 150 mm above the lowest point on the site boundary (see Figure 2).
3.0 Drainage System Materials and Construction

3.1 Materials

3.1.1 Pipe materials shall comply with the standards given in Table 1.

<table>
<thead>
<tr>
<th>Material</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>AS/NZS 4068</td>
</tr>
<tr>
<td>Vitrified clay</td>
<td>AS 1741</td>
</tr>
<tr>
<td>Steel</td>
<td>NZS 4442 or AS 1579</td>
</tr>
<tr>
<td>Ductile iron</td>
<td>AS/NZS 2280</td>
</tr>
<tr>
<td>PVC-U</td>
<td>AS/NZS 1280 or AS/NZS 1254</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>AS/NZS 4130 or AS/NZS 2065</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>AS/NZS 2065</td>
</tr>
</tbody>
</table>

3.2 Sizing of drains

3.2.1 Drains shall be of sufficient size and gradient to transport surface water from the site, and be capable of handling the rainfall calculated to fall on roof and paved areas of the site during a storm with a 10% probability of occurring annually. No drain shall have an internal diameter of less than 85 mm.

3.2.2 Figure 3 provides a method for selecting the correct pipe size for a calculated modified catchment area, given as:

\[\text{Modified catchment area} = 0.01 \cdot A_l \]

where

\[A = \text{area being drained comprising plan roof area (m}^2\text{) plus paved area (m}^2\text{).} \]

\[l = \text{rainfall intensity for a storm with a 10\% probability of occurring annually and a 10 minute duration (mm/hr).} \]

The rainfall intensity \(l \) shall be obtained from the territorial authority. Where the territorial authority does not have this information the rainfall intensity shall be determined by interpolation of the figures in Appendix A.

3.2.3 The modified catchment area method is only suitable for the combination of pipe sizes, gradients and areas indicated in Figure 3. For other combinations specific design is required.

3.3 Alignment and gradient of drains

3.3.1 Drains shall be laid on a uniform line and gradient between points of access (see Paragraph 3.7). The change in direction of a drain shall not exceed 90° at any point, and where practical should be kept to less than 45° as illustrated in Figure 4.

3.3.2 Where two drains intersect, the directions of flow as shown in Figure 5 shall be at an angle of 60° or less.

3.4 Minimum gradients

3.4.1 Minimum acceptable gradients for surface water drains are given in Table 2.

<table>
<thead>
<tr>
<th>Drain internal diameter (mm)</th>
<th>Minimum gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>85 mm</td>
<td>1 in 90</td>
</tr>
<tr>
<td>100 mm</td>
<td>1 in 120</td>
</tr>
<tr>
<td>150 mm</td>
<td>1 in 200</td>
</tr>
<tr>
<td>225 mm</td>
<td>1 in 350</td>
</tr>
</tbody>
</table>

3.4.2 Restricted fall to outlet

Where the surface water sewer, road channel or other outfall is at too high a level to allow the gradient required by Table 2, the bubble-up chamber system shown in Figures 6 and 7 may be used provided that:

a) The ground level adjacent to any downpipe discharging to the bubble-up chamber is at least 150 mm higher than the level of the top of the chamber outlet.

b) The connections between the drain and downpipes are sealed.

c) The total chamber depth does not exceed 1.0 m.

Continued on page 36
Figure 3: Sizing of Surface Water Drains
Paragraphs 3.2.2 and 3.2.3

Figure 4: Changes of Direction
Paragraph 3.3.1
The bubble-up chamber allows the water to be discharged through pipes laid at the allowable minimum gradients, and for the convenient collection and removal of any silts or debris which might enter the system.

3.5 Jointing of drains

3.5.1 All joints in drains shall be watertight and prevent the infiltration of groundwater and the intrusion of tree roots.

3.5.2 Acceptable jointing methods and the relevant standards are given in Table 3. Jointing of drains shall be subject to the tests called for in Paragraph 3.8.

3.5.3 Where a drain consists of concrete, ceramic, vitrified clay or rubber ring jointed steel or uPVC, a flexible joint shall be installed within 225 mm of the outside wall of any access chamber or inspection chamber, but outside the line of the base (see Figures 11 and 12).

COMMENT:
This allows for differential settlement between the access chamber, or the inspection chamber, and the pipeline while minimizing damage to the pipeline.

3.6 Surface water inlets to drains

3.6.1 All surface water, except that collected directly from a roof, shall enter the drain via a sump which has:

a) A grating, hinged or removable for maintenance access. The grating shall comprise at least 35% openings. The smaller dimension of any individual opening shall not exceed 35 mm,

b) Capacity at the bottom for settlement of silt and debris, and

c) A submerged (or trapped) outlet which prevents floatable solids entering the drain.
3.6.2 Two different sumps are shown in Figures 8 and 9. The sump shown in Figure 8 is suitable for an area of up to 4500/I m² and the sump illustrated by Figure 9 is suitable for an area up to 40,000/I m², where I is the rainfall intensity for a storm with a 10% probability of occurring annually. (See Paragraph 3.2.2.)

3.7 Access for maintenance

3.7.1 Access for maintenance shall be provided on all drains. Access is to be achieved via an inspection point, rodding point, inspection chamber or access chamber, complying as appropriate with Figures 10, 11 or 12.

3.7.2 Points of access shall be spaced at no further than:

a) 50 m where rodding points are used.
b) 100 m where inspection points, inspection chambers or access chambers are used.

3.7.3 Points of access are required at:

a) Changes in direction of greater than 45°,
b) Changes in gradient of greater than 45°, and

COMMENT:
Rodding points rather than inspection points are preferred in landscaped or sealed areas.
c) Junctions of drains other than a drain, serving a single downpipe, that is less than 2.0 m long.

3.7.4 Inspection chambers or access chambers (see Figures 11 and 12) shall be provided where changes in both gradient and direction occur and where either is greater than 22.5°.

3.7.5 Where the depth to the invert of the drain exceeds 1.0 m, an inspection chamber is not acceptable and an access chamber shall be used.

3.7.6 Drain under buildings

Any drain laid under a building shall be run in a straight line from one side to the other.

3.7.7 Access to a drain laid under a building shall be provided immediately outside the building. These points of access shall be located within 2.0 m of an exterior wall.

3.7.8 Under a building the only acceptable inlets to a drain are from sealed roof-water downpipes. Access shall be provided to the drain via a sealed access point in the downpipe immediately above ground floor level.
3.8 Testing of drains

3.8.1 Surface water drains shall be capable of passing one of the tests described in E1/VM1 Paragraph 8.0.

3.9 Bedding and backfilling

3.9.1 General

NZBC B1 requires all drains be constructed to withstand the combination and frequency of loads likely to be placed upon them without collapse, undue damage, undue deflection or undue vibration. In addition, adequate support needs to be provided to prevent gradients becoming less than those required by Paragraph 3.4.1 as a result of:

a) Differential settlement, or

b) Deflection of an unsupported span.

3.9.2 Bedding and backfilling

Figure 13 gives acceptable solutions for the bedding and backfilling of the drainage pipes listed in Table 1 except where:

a) The trench is located within or above peat, or

b) Scouring of the trench is likely due to unstable soils, or

c) The horizontal separation between any building foundation and the underside of the pipe trench is less than that required by Paragraph 3.9.7, or

d) The cover H to the pipe is more than 2.5 m.

3.9.3 Trench slope

Where the slope of the trench is 1 in 8 or greater, anti-scour blocks shall be provided. These anti-scour blocks shall be:

a) Constructed from 150 mm thick concrete (17 MPa),

b) Keyed into the sides and floor of the trench by 150 mm,

c) Extended to 300 mm above the drain or to ground level where the drain cover is less than 300 mm, and

Continued on page 41
Figure 13: Bedding and Backfilling

Paragraphs 3.9.2, 3.9.4 and 3.9.5

(a) Cover greater than 500 mm

Bedding type ‘B’ of NZS 4452

(b) Cover greater than 375 mm

Bedding type ‘D’ of NZS 4452

(c) Cover greater than 125 mm

NOTE:
- All fill shall be
- Ordinary fill where drains are located below gardens and open country.
- Compacted selection fill where the drains are located below residential driveways and similar areas subjected to light traffic.
Acceptable Solution E1/AS1

3.9.4 Trench width
The width B of the trench shall be no less than the pipe diameter D plus 200 mm. Trench width at the top of the pipe shall be no more than 600 mm unless the pipe(s) in the trench are covered with concrete, as shown in Figure 13 (c).

3.9.5 Acceptable materials
Acceptable fill materials shown in Figure 13 are:

a) Bedding material of clean granular non-cohesive material with a maximum particle size of 20 mm, or

b) Selected compacted fill of any fine-grained soil or granular material which is free from topsoil and rubbish and has a maximum particle size of 20 mm, or

c) Ordinary fill which may comprise any fill or excavated material.

3.9.6 Placing and compacting

a) Granular bedding and selected fill shall be placed in layers of no greater than 100 mm loose thickness and compacted.

b) Up to 300 mm above the pipe, compaction shall be by tamping by hand using a rod with a pad foot (having an area of 75 ± 25 mm by 75 ± 25 mm) over the entire surface of each layer to produce a compact layer without obvious voids.

c) More than 300 mm above the pipe, compaction shall be by at least four passes of a mechanical tamping foot compactor (whacker type) with a minimum weight of 75 kg.

3.9.7 Proximity of trench to building
For light timber frame and concrete masonry buildings constructed to NZS 3604 or NZS 4229 in accordance with B1/AS1, pipe trenches which are open for no longer than 48 hours shall be located no closer than distance ‘V’ (see Figure 14) to the underside of any building foundation. Where the trench is to remain open for periods longer than 48 hours, the minimum horizontal separation shall increase to 3V in all ground except rock.

3.9.8 AS/NZS 2032, AS/NZS 2566.1 and AS/NZS 2566.2 provide other acceptable solutions.

COMMENT:
These provisions may exceed New Zealand Building Code minimum requirements.
4.0 Downpipes

4.1 Materials

4.1.1 Materials for downpipes shall comply with Table 4.

<table>
<thead>
<tr>
<th>Table 4: Acceptable Material Standards for Downpipes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC-U</td>
</tr>
<tr>
<td>Galvanised steel</td>
</tr>
<tr>
<td>Copper</td>
</tr>
<tr>
<td>Aluminium</td>
</tr>
<tr>
<td>Stainless steel</td>
</tr>
<tr>
<td>Zinc aluminium</td>
</tr>
</tbody>
</table>

4.1.2 Downpipes, gutters, roofing, fastenings and all adjoining components shall be of the same or a compatible material to eliminate the risk of galvanic corrosion.

4.2 Sizing of downpipes

4.2.1 Downpipes sized using Table 5 are acceptable. Other downpipes are acceptable provided their cross-sectional area is no less than that required by Table 5, and they permit passage of a 50 mm diameter sphere.

<table>
<thead>
<tr>
<th>Table 5: Downpipe Sizes for Given Roof Pitch and Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downpipe size (mm)</td>
</tr>
<tr>
<td>(minimum internal sizes)</td>
</tr>
<tr>
<td>63 mm diameter</td>
</tr>
<tr>
<td>74 mm diameter</td>
</tr>
<tr>
<td>100 mm diameter</td>
</tr>
<tr>
<td>150 mm diameter</td>
</tr>
<tr>
<td>65 x 50 rectangular</td>
</tr>
<tr>
<td>100 x 50 rectangular</td>
</tr>
<tr>
<td>75 x 75 rectangular</td>
</tr>
<tr>
<td>100 x 75 rectangular</td>
</tr>
</tbody>
</table>

4.3 Installation of downpipes

4.3.1 Where thermal movement of downpipes cannot be accommodated by movement of the guttering, expansion joints shall be incorporated.

4.3.2 All internal downpipes shall withstand without leakage, a water test with an applied head of 1.5 m of water, or a high pressure air test as described in E1/VM1 Paragraph 8.3.

5.0 Roof Gutters

5.1 Size of roof gutters

5.1.1 Roof gutters shall discharge to downpipes that are sized as given in Paragraph 4.2.

5.1.2 Any gutter under consideration shall be divided into sections and each section shall be sized. A section shall comprise the length of gutter between a downpipe and the adjacent high point on one side only of that downpipe. Each section of gutter shall have a cross-sectional area of no less than that determined from Figure 15 or Figure 16 (depending on whether the gutter is external or internal), and increased where required in accordance with Paragraph 5.1.3.

5.1.3 Figures 15 and 16 are based on a rainfall intensity “I” of 100 mm/hr. Where “I” exceeds 100 mm/hr the required gutter size shall be increased by taking the value read from the figures and multiplying it by the ratio of “I”/100. Paragraph 3.2.2 describes how to determine the value of “I”.

[Amend 1 Sep 1993] [Amend 2 Aug 1994] [Amend 7 Sep 2010] [Amend 8 Oct 2011]
Figure 15: Cross-sectional Area of External Gutter
Paragraphs 5.1.2 and 5.1.3

Figure 16: Cross-sectional Area of Internal Gutter
Paragraphs 5.1.2 and 5.1.3
5.1.4 In no case shall the cross-sectional area of any gutter be less than 4000 mm².

5.2 Materials

5.2.1 Roof gutter materials shall comply with the standards stated in Table 6.

COMMENT:
Proprietary membrane systems using bitumen, rubber or epoxy resins may also be acceptable.

5.3 Gradients

5.3.1 Roof gutters shall fall to an outlet.

5.4 Thermal movement

5.4.1 Allowance shall be made for the thermal expansion and contraction of gutters. Table 7 shows for different materials the change in length of 5.0 m of guttering when subjected to a 50°C change in temperature.

COMMENT:
The provision of expansion joints is particularly important where both ends of a gutter are restrained against movement, and on PVC-U guttering due to its relatively high rate of thermal expansion.

5.5 Overflow outlets

5.5.1 All internal gutters shall be fitted with overflow outlets which drain to the exterior of the building. The top of the outlet shall be set at least 50 mm below the top of the gutter. The cross-sectional area of the outlet shall be no less than the cross-sectional area of the downpipes (determined by Paragraph 4.2.1) serving the gutter.

COMMENT:
An internal gutter overflow outlet should be located to give an early, conspicuous warning to the building occupier that maintenance is required.

5.5.2 External gutters do not require overflow outlets but shall be installed to ensure any overflow from the gutter spills to the outside of the building.

COMMENT:
Although specific overflow provision is not necessary it is nevertheless important to ensure any overflowing water cannot track back inside the building where it could cause problems.
Appendix A Rainfall Intensities

Rainfall Intensities (mm/hr)
For a storm with a 10% probability of occurring annually and a 10 minute duration
Rainfall Intensities (mm/hr)
For a storm with a 10% probability of occurring annually and a 10 minute duration.

SURFACE WATER

Appendix A E1/AS1

SOUTH ISLAND

- Greytown
- Christchurch
- Timaru
- Dunedin
- Invercargill
- Stewart Island

July 1992

DEPARTMENT OF BUILDING AND HOUSING
Index E1/VM1 & AS1
(Revised by Amendment 4)

All references to Verification Methods and Acceptable Solutions are preceded by **VM** or **AS** respectively.

Building site **VM1** 3.2.2, 4.0.1, 4.1.10, **AS1** 1.0.1
evaluation .. **VM1** 1.0.3

Buildings .. **AS1** 1.0.1
minimum floor level **AS1** 2.0, Figures 1 and 2

Catchment
characteristics **VM1** 1.0.2, 2.0.1, 2.1, 2.3, 4.2.1

Downpipes **AS1** 3.4.2 b), 3.7.8, 4.0, 5.1.1
installation .. **AS1** 4.3
materials .. **AS1** 4.1, Table 4
sizing .. **AS1** 4.2, Table 5

Drainage
access points **AS1** 3.7, 3.7.3, 3.7.7, 3.7.8
access chambers **VM1** 5.0.1, **AS1** 3.7.1,
3.7.2 b), 3.7.4, 3.7.5, Figure 12
inspection chambers **AS1** 3.7.1, 3.7.2 b), 3.7.4,
3.7.5, Figure 11
inspection points **AS1** 3.7.1, 3.7.2 b)
rodding points **AS1** 3.7.1, 3.7.2 a), Figure 10
alignment **AS1** 3.3, 3.7.3 a), Figures 4 and 5
bedding and backfilling **AS1** 3.9, 3.9.2, Figure 13
other Acceptable Solutions **AS1** 3.9.8
materials **AS1** 3.9.5
placing and compacting **AS1** 3.9.6
proximity to buildings **AS1** 3.9.7, Figure 14
trench slope **AS1** 3.9.3
trench width **AS1** 3.9.4
bubble-up chamber system **AS1** 3.4.2, Figures 6 and 7
downstream water systems **VM1** 4.3
drains under buildings **AS1** 3.7.6, 3.7.7, 3.7.8
gradient **AS1** 3.3.1, 3.7.3 b)
minimum gradient **AS1** 3.4, Table 2
joints **AS1** 3.5, Table 3
leakage tests **VM1** 8.0, **AS1** 3.8
high pressure air test **VM1** 8.3
low pressure air test **VM1** 8.2
water test **VM1** 8.1
materials **AS1** 3.1, Table 1
open water, upstream of site **VM1** 4.2
piped water, upstream of site **VM1** 4.1
quantity **VM1** 4.1.10
tailwater depth **VM1** 4.1.6, 4.1.7
Drainage (continued)

- secondary flow VM1 4.0, AS1 1.0.1 d)
- downstream drainage VM1 4.3
- flow VM1 4.1.11
- headwater depth VM1 4.1.4, 4.1.5, 4.1.8,
 4.1.9, Figures 5, 6, 7, 10 and 11
- site – outfall protection VM1 7.0
- sizing VM1 3.0, AS1 3.2, Figure 3
- energy losses VM1 5.0
- hydraulic design of drains VM1 1.0.4, 3.2, Figures 6 and 7
 - air entrainment VM1 3.2.4
 - headwater depth VM1 3.2.2, Figure 5 a)
 - minimum size VM1 3.1
 - minimum velocity VM1 6.0
 - pipe size decrease VM1 5.0.2
- soak pits VM1 9.0, Figure 13
- sumps AS1 3.6.1, 3.6.2, Figures 8 and 9
- surface water inlets AS1 3.6
- upstream water systems VM1 4.1, 4.2

Flooding

- flood risk assessment VM1 3.2.2
- historical information AS1 1.0.1
- protection from VM1 3.2.2

Gutters

- gradients AS1 5.0
- materials AS1 5.2, Table 6
- overflow outlets AS1 5.5
- sizing outlets AS1 5.1, Figures 15 and 16
- thermal movement AS1 5.4, Table 7

Run-off

- estimation of run-off VM1 2.0
- Rational Method VM1 2.0.1
 - rainfall intensity VM1 2.2, AS1 Appendix A
 - run-off coefficient VM1 2.1, Table 1
 - slope correction VM1 2.1.3, Table 2
 - time of concentration VM1 2.2.1, 2.3
 - alternative procedure VM1 2.3.6, 2.3.7
 - catchment slopes VM1 2.3.7
 - open channel flow VM1 2.3.5
 - pipe flow VM1 2.3.4, Table 1
 - time of entry VM1 2.3.2
 - overland flow VM1 2.3.2 b), Figure 1
 - road channel flow VM1 2.3.2 b), Figure 2
 - time of network flow VM1 2.3.3