Status of Compliance Documents

Compliance Documents are prepared by the Department of Building and Housing in accordance with section 22 of the Building Act 2004. A Compliance Document is for use in establishing compliance with the New Zealand Building Code.

A person who complies with a Compliance Document will be treated as having complied with the provisions of the Building Code to which the Compliance Document relates. However, a Compliance Document is only one method of complying with the Building Code. There may be alternative ways to comply.

Users should make themselves familiar with the preface to the New Zealand Building Code Handbook, which describes the status of Compliance Documents and explains alternative methods of achieving compliance.

Defined words (italicised in the text) and classified uses are explained in Clauses A1 of the Building Code and in the Definitions at the start of this Compliance Document.

<table>
<thead>
<tr>
<th>Date of Amendment</th>
<th>Date of Alteration</th>
<th>Items Altered</th>
</tr>
</thead>
<tbody>
<tr>
<td>First published</td>
<td>July 1992</td>
<td></td>
</tr>
<tr>
<td>Amendment 1</td>
<td>December 1993</td>
<td>p. 12, Table 5, p. 15, 4.4.2, 4.5.2</td>
</tr>
<tr>
<td>Amendment 2</td>
<td>19 August 1994</td>
<td>pp. i and ii, Document History, p. vii, Contents, p. viii, References, pp. ix and x, Definitions, p. 1, 1.0, 1.0.1, 1.0.2, p. 3, 1.2.1, p. 4, Figure 2, p. 6, 1.7.1, p. 6A, 2.1.1, 2.1.2, 2.1.3, 2.1.4, pp. 6B, 6C, 6D, Table 1A, p. 6D, 2.2.1, p. 7, 3.1.4</td>
</tr>
<tr>
<td>Amendment 3</td>
<td>1 December 1995</td>
<td>p. ii, Document History, p. vii, References</td>
</tr>
<tr>
<td>Amendment 4</td>
<td>1 July 2001</td>
<td>p. 2, Document History, Status, p. 11, References, p. 13, Definitions</td>
</tr>
</tbody>
</table>

Note: Page numbers relate to the document at the time of Amendment and may not match page numbers in current document.

Document Status

The most recent version of this document, as detailed in the Document History, is approved by the Chief Executive of the Department of Building and Housing. It is effective from 1 July 2001 and supersedes all previous versions of this document.

People using this Compliance Document should check for amendments on a regular basis. The Department of Building and Housing may amend any part of any Compliance Document at any time. Up-to-date versions of Compliance Documents are available from www.dbh.govt.nz
New Zealand Building Code

Clause D1 Access Routes

This Clause is extracted from the New Zealand Building Code contained in the First Schedule of the Building Regulations 1992.

<table>
<thead>
<tr>
<th>Provisions</th>
<th>Limits on application</th>
</tr>
</thead>
</table>
| **OBJECTIVE**
D1.1 The objective of this provision is:
(a) Safeguard people from injury during movement into, within and out of buildings,
(b) Safeguard people from injury resulting from the movement of vehicles into, within and out of buildings, and
(c) Ensure that people with disabilities are able to enter and carry out normal activities and functions within buildings. | Objective D1.1(c) shall apply only to those buildings to which section 25 of the Disabled Persons Community Welfare Act 1975 applies. |
| **FUNCTIONAL REQUIREMENT**
D1.2.1 Buildings shall be provided with reasonable and adequate access to enable safe and easy movement of people.
D1.2.2 Where a building is provided with loading or parking spaces, they shall be constructed to permit safe and easy unloading and movement of vehicles, and to avoid conflict between vehicles and pedestrians. | Requirement D1.2.1 shall not apply to Ancillary buildings or Outbuildings. |
| **PERFORMANCE**
D1.3.1 Access routes shall enable people to:
(a) Safely and easily approach the main entrance of buildings from the apron or construction edge of a building,
(b) Enter buildings,
(c) Move into spaces within buildings by such means as corridors, doors, stairs, ramps and lifts,
(d) Manoeuvre and park cars, and
(e) Manoeuvre and park delivery vehicles required to use the loading space. | |

Provisions

D1.3.2 At least one access route shall have features to enable people with disabilities to:

(a) Approach the building from the street boundary or, where required to be provided, the building car park,

(b) Have access to the internal space served by the principal access, and

(c) Have access to and within those spaces where they may be expected to work or visit, or which contain facilities for personal hygiene as required by Clause G1 "Personal Hygiene".

D1.3.3 Access routes shall:

(a) Have adequate activity space,

(b) Be free from dangerous obstructions and from any projections likely to cause an obstruction,

(c) Have a safe cross fall, and safe slope in the direction of travel,

(d) Have adequate slip-resistant walking surfaces under all conditions of normal use,

(e) Include stairs to allow access to upper floors irrespective of whether an escalator or lift has been provided,

(f) Have stair treads, and ladder treads or rungs which:
 (i) provide adequate footing, and
 (ii) have uniform rise within each flight and for consecutive flights,

(g) Have stair treads with a leading edge that can be easily seen,

Limits on application

Performance D1.3.2 shall not apply to Housing, Outbuildings, Ancillary buildings, and to Industrial buildings where no more than 10 people are employed.
Provisions

(h) Have stair treads which prevent children falling through or becoming held fast between treads, where open risers are used,

(i) Not contain isolated steps,

(j) Have smooth, reachable and graspable handrails to provide support and to assist with movement along a stair or ladder,

(k) Have handrails of adequate strength and rigidity as required by Clause B1 “Structure”,

(l) Have landings of appropriate dimensions and at appropriate intervals along a stair or ramp to prevent undue fatigue,

(m) Have landings of appropriate dimensions where a door opens from or onto a stair, ramp or ladder so that the door does not create a hazard, and

(n) Have any automatically controlled doors constructed to avoid the risk of people becoming caught or being struck by moving parts.

Limits on application

Performance D1.3.3 (h) shall not apply within Industrial buildings, Outbuildings and Ancillary buildings.

Performance D1.3.3 (i) shall not apply with Detached Dwellings or within household units of Multi-unit Dwellings, or to Outbuildings and Ancillary buildings.

Performance D1.3.3 (j) shall not apply to isolated steps.

D1.3.4 An accessible route, in addition to the requirement of Clause D1.3.3, shall:

(a) Be easy to find, as required by Clause F8 “Signs”,

(b) Have adequate activity space to enable a person in a wheelchair to negotiate the route while permitting an ambulant person to pass,
<table>
<thead>
<tr>
<th>Provisions</th>
<th>Limits on application</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c) Include a lift complying with Clause D2 "Mechanical Installations for Access" to upper floors where:</td>
<td></td>
</tr>
<tr>
<td>(i) buildings are four or more storeys high,</td>
<td></td>
</tr>
<tr>
<td>(ii) buildings are three storeys high and have a total design occupancy of 50 or more persons on the two upper floors,</td>
<td></td>
</tr>
<tr>
<td>(iii) buildings are two storeys high and have a total design occupancy of 40 or more persons on the upper floor, or</td>
<td></td>
</tr>
<tr>
<td>(iv) an upper floor, irrespective of design occupancy, is to be used for the purposes of public reception areas of banks, central, regional and local government offices and facilities, hospitals, medical and dental surgeries, and medical, paramedical and other primary health care centres,</td>
<td></td>
</tr>
<tr>
<td>(d) Contain no thresholds or upstands forming a barrier to an unaided wheelchair user,</td>
<td></td>
</tr>
<tr>
<td>(e) Have means to prevent the wheel of a wheelchair dropping over the side of the accessible route,</td>
<td></td>
</tr>
<tr>
<td>(f) Have doors and related hardware which are easily used.</td>
<td></td>
</tr>
<tr>
<td>(g) Not include spiral stairs, or stairs having open risers,</td>
<td></td>
</tr>
<tr>
<td>(h) Have stair treads with leading edge which is rounded, and</td>
<td></td>
</tr>
<tr>
<td>Provisions</td>
<td>Limits on application</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>(i) Have handrails on both sides of the accessible route when the slope of the route exceeds 1 in 20. The handrails shall be continuous along both sides of the stair, ramp and landing except where the handrail is interrupted by a doorway.</td>
<td></td>
</tr>
<tr>
<td>D1.3.5 Vehicle spaces and circulation routes shall have:</td>
<td></td>
</tr>
<tr>
<td>(a) Dimensions appropriate to the intended use,</td>
<td></td>
</tr>
<tr>
<td>(b) Appropriate crossfall, and slope in the direction of travel,</td>
<td></td>
</tr>
<tr>
<td>(c) Adequate queuing and circulation space, and</td>
<td></td>
</tr>
<tr>
<td>(d) Adequate sight distances.</td>
<td></td>
</tr>
<tr>
<td>D1.3.6 Vehicle spaces for use by people with disabilities, shall, in addition to the requirements of Clause D1.3.5, be:</td>
<td></td>
</tr>
<tr>
<td>(a) Provided in sufficient numbers,</td>
<td></td>
</tr>
<tr>
<td>(b) Located to avoid conflict between vehicles and people using or moving to or from the space, and</td>
<td></td>
</tr>
<tr>
<td>(c) Easy to find as required by Clause F8 Signs.</td>
<td></td>
</tr>
</tbody>
</table>
Contents D1/VM1 & AS1

References

Page 11

Definitions

Page 13

Verification Method D1/VM1

Page 15

1.0 Slip Resistance

Page 15

Acceptable Solution D1/AS1

Page 17

1.0 General Criteria

Page 17

1.1 Location

Page 17

1.2 Slope

Page 17

1.3 Changes in level

Page 17

1.4 Height clearances

Page 18

1.5 Obstructions

Page 18

1.6 Structural stability

Page 20

1.7 Barriers

Page 21

1.8 Lighting

Page 21

2.0 Level Access Routes

Page 21

2.1 Slip resistance

Page 21

2.2 Width

Page 25

2.3 Protection from falling

Page 25

3.0 Ramps

Page 25

3.1 Slope

Page 25

3.2 Width

Page 26

3.3 Landings

Page 26

3.4 Kerb ramps

Page 27

4.0 Stairways

Page 27

4.1 Pitch, risers and treads

Page 27

4.2 Width

Page 30

4.3 Landings

Page 31

4.4 Curved and spiral stairways

Page 33

4.5 Stair winders

Page 33

4.6 Visibility of stair treads

Page 33

5.0 Fixed Ladders

Page 34

5.1 General

Page 34

5.2 Step-type ladders

Page 37

5.3 Rung-type ladders

Page 38

5.4 Individual rung-type ladders

Page 39

6.0 Handrails

Page 39

7.0 Doors and Openings

Page 43

8.0 Places of Assembly

Page 43

8.1 Spaces for wheelchairs

Page 43

8.2 Access to performance areas

Page 43

9.0 Accessible Accommodation

Page 43

9.1 Units of Communal Residential Buildings

11.0 Alternative Acceptable Solutions

Page 46

12.0 Lifts

Page 46

Index

Page 47
References

For the purposes of New Zealand Building Code compliance, acceptable reference documents include only the quoted edition and specific amendments as listed below.

Standards New Zealand

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZS/AS 1657: 1992</td>
<td>Fixed platforms, walkways, stairways and ladders – Design, construction and installation (known as the SAA Code for fixed platforms, walkways, stairways, and ladders)</td>
</tr>
<tr>
<td>NZS 3114: 1987</td>
<td>Specification for concrete surface finishes</td>
</tr>
<tr>
<td>NZS 3116: 1991</td>
<td>Interlocking concrete block paving</td>
</tr>
<tr>
<td>NZS 4121: 2001</td>
<td>Design for access and mobility – Buildings and associated facilities</td>
</tr>
</tbody>
</table>

Standards Australia

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 2890:- Part 1: 1993</td>
<td>Off street parking</td>
</tr>
<tr>
<td>AS 2890:- Part 2: 1989</td>
<td>Commercial vehicle facilities</td>
</tr>
<tr>
<td>AS/NZS 3661:- Part 2: 1994</td>
<td>Guide to the reduction of slip hazards</td>
</tr>
</tbody>
</table>

British Standards Institution

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 585:- Part 1: 1989</td>
<td>Specification for stairs with closed risers for domestic use, including straight and winder flights and quarter or half landings</td>
</tr>
<tr>
<td>BS 5395:- Part 2: 1984</td>
<td>Stairs, ladders and walkways Code of practice for the design of helical and spiral stairs</td>
</tr>
</tbody>
</table>

Where quoted

<table>
<thead>
<tr>
<th>Reference</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS1 11.0.3</td>
<td></td>
</tr>
<tr>
<td>AS1 11.0.1, 12.0.2</td>
<td></td>
</tr>
<tr>
<td>AS1 10.1, 10.2</td>
<td></td>
</tr>
<tr>
<td>AS1 11.0.2</td>
<td></td>
</tr>
<tr>
<td>VM1 1.0.2, AS1 2.1.1, 3.1.4, Table 2</td>
<td></td>
</tr>
<tr>
<td>AS1 2.1.3</td>
<td></td>
</tr>
</tbody>
</table>
Definitions

This is an abbreviated list of definitions for words or terms particularly relevant to this Approved Document. The definitions for any other italicised words may be found in the New Zealand Building Code Handbook.

Access route A continuous route that permits people and goods to move between the apron or construction edge of the building to spaces within a building, and between spaces within a building.

Accessible Having features to permit use by people with disabilities.

Accessible route An access route usable by people with disabilities. It shall be a continuous route that can be negotiated unaided by a wheelchair user. The route shall extend from street boundary or car parking area to those spaces within the building required to be accessible to enable people with disabilities to carry out normal activities and processes within the building.

Accessible stairway A stairway having features for use by people with disabilities. Buildings required to be accessible shall have at least one accessible stairway leading off an accessible route whether or not a lift is provided.

Adequate Adequate to achieve the objectives of the building code.

Building has the meaning ascribed to it by the Building Act 1991.

Common ramp A ramp which is used, or intended to be used by the public whether as of right or not, and is not a service ramp or accessible ramp.

Common stairway A stairway which is used, or intended to be used, by the public whether as of right or not, and is not a private stairway, service stairway or accessible stairway.

Handrail A rail to provide support to, or assist with the movement of a person.

Household unit means any building or group of buildings, or part of any building or group of buildings, used or intended to be used solely or principally for residential purposes and occupied or intended to be occupied exclusively as the home or residence of not more than one household; but does not include a hostel or boardinghouse or other specialised accommodation.

Kerb ramp means a short ramp either cutting through a kerb or built up to the kerb.

Main private stairway A private stairway intended to provide access to and between frequently used spaces such as living areas, kitchens and garages, and includes all exterior private stairways.

Minor private stairway A private stairway not on a main thoroughfare, and intended to provide infrequent access to a single room which is not a living area or kitchen.

Nosing The rounded projecting edge of a stair tread.

People with disabilities means any person who suffers from physical or mental disability to such a degree that he or she is seriously limited in the extent to which he or she can engage in the activities, pursuits, and the processes of everyday life.

Pitch line The line joining the leading edge or nosings (if any) of successive stair treads within a single flight of a stairway.

Private stairway A stairway used, or intended to be used, by the occupants of a single household unit.

Secondary private stairway A private stairway other than a main or minor private stairway, intended to provide access to another floor containing only bedrooms, bathroom or similar accommodation.
Service ramp means a ramp that is used, or intended to be used, infrequently by service personnel to gain access to spaces for the purposes of maintenance and the movement of goods.

Service stairway means a stairway that is used, or intended to be used, infrequently by service personnel to gain access to spaces for the purposes of maintenance and the movement of goods.

Stairway A series of steps or stairs with or without landings, including all necessary handrails and giving access between two different levels.

Threshold A sill to an external door, or the floor under an internal door.
1.0 Slip Resistance

1.0.1 Compliance with the slip-resistant performance of NZBC D1.3.3 (d) may be verified by confirming that the walking surface under the expected conditions of use has a coefficient of friction (μ) of no less than:

\[\mu = 0.4 + 0.0125 S \]

where S is the slope of the walking surface expressed as a percentage.

1.0.2 Measurement of the coefficient of friction shall be in accordance with AS/NZS 3661.1.
Acceptable Solution D1/AS1

1.0 General Criteria

1.1 Location

1.1.1 Accessible routes shall be provided to give direct access to the principal entrance to the building where practical. If it is not practical, the alternative most direct practical route to the space served by the principal entrance shall be used. The route shall have signs complying with NZBC F8.

1.1.2 Where a site has separate buildings as part of a single complex, accessible routes shall not deviate substantially from the convenient or direct route commonly used.

1.1.3 Where accessible units of Community service buildings are provided, an accessible route shall connect all accessible units to reception areas, offices, shops, dining rooms, kitchens, laundries, ablution blocks, recreation rooms and any other communal facilities.

1.1.4 Figure 1 illustrates an acceptable solution with provision for people with disabilities to approach buildings.

1.1.5 Access routes which are part of an escape route shall also comply with NZBC C2.

1.2 Slope

1.2.1 Slope in direction of travel

Acceptable slopes for different types of access routes are shown in Figure 2.

1.2.2 Cross fall

Where the surface of an access route is subject to wetting, the surface shall have a cross fall of no less than 1 in 100. The surface of any access route shall not have a cross fall of more than 1 in 50.

1.3 Changes in level

1.3.1 Except in household units or where permitted by Paragraph 1.3.2, a single isolated step shall not be permitted but the change of level shall be constructed as a ramp complying with Paragraph 3.0.

1.3.2 Threshold weather stops projecting no more than 20 mm above the threshold finished surface are acceptable.

COMMENT:
Threshold weather stops greater than 20 mm should be designed as ramps complying with Paragraph 3.0. Height changes at doorways are particularly inconvenient for wheelchair users as it requires complex manoeuvring to get over the change in level while opening the door.
1.4 Height clearances

1.4.1 Access routes shall have height clearances complying with Table 1 and as shown in Figure 3.

COMMENT:
Particular care must be taken to ensure that there is adequate height clearance between the pitch line and the underside of an upper tread where spiral stairways are used.

1.5 Obstructions

1.5.1 A minor projection is permitted within the required clear width of an access route if it is designed to minimise the risk of injury or impact, and the projection is located:

a) More than 1600 mm above floor level and projects less than 200 mm into the access route (Figure 4),

b) Within the height 800 mm to 1600 mm above floor level and projects less than 60 mm into the access route, (Figure 4),

c) Less than 800 mm above floor level and projects less than 100 mm into the access route (Figure 4).

COMMENT:
Light fittings less than 1600 mm above the floor would need to be recessed into the wall. A projection of 60 mm is sufficient to allow for electrical sockets, signs on walls, etc.
1.5.2 Handrails may be considered a minor projection if they project no more than:
a) 100 mm into the access route (see Figure 4), or
b) In the case of a centre handrail, 300 mm into a landing (see Figure 25).

1.5.3 Major projections (see Figure 5) are permitted if:
a) The clear width of the access route is provided between the faces of the projections, and
b) The transition between the face of the wall and the face of the projection is designed to minimise the risk of injury by impact.

1.5.4 Dangerous projections – Windows, fittings or other dangerous obstructions may project into the space adjacent to an access route (see Figure 6) if users are protected from the projection by:
a) A kerb provided at floor level which defines the extent of the projection, or
b) A handrail, guard-rail, or other protection at sill level.

COMMENT:
1. Many people with disabilities require better lighting than is normally provided to highlight obstructions. This applies particularly with respect to the elderly and those with impaired sight.
2. Illumination should also highlight doors, signs, counters and other areas.
3. Lighting designers should avoid glare and sudden sharp changes in lighting levels. Diffused types of lighting are preferred.
1.5.5 **Isolated columns** are permitted in an **access route** (see Figure 7) provided that:

a) The column can be readily seen during normal use of the building, and

b) A clear passage of no less than 900 mm is available on both sides; and, on an **accessible route**, a clear passage of no less than 1200 mm is available on at least one side.

1.6 **Structural stability**

1.6.1 The **access route** including **handrails** shall comply with the strength and stiffness requirements of NZBC B1.
1.7 Barriers

1.7.1 Barriers to prevent falling from the access route shall comply with NZBC F4.

COMMENT:
Barriers and handrails, having different functions, are considered separately in the building code. A barrier (or balustrade on a stair) is required to prevent people falling where there is a sudden change in level. A handrail is a graspable rail designed to guide and support people using a stairway or ramp. A handrail may be attached to or form the top of a barrier where the height is appropriate.

1.8 Lighting

1.8.1 Artificial lighting complying with NZBC G8 shall be provided along the access route.

2.0 Level Access Routes

2.1 Slip resistance

2.1.1 Level access routes to which the public has access, including level accessible routes, shall have a mean coefficient of friction \(\mu \), of not less than 0.4 when tested in accordance with AS/NZS 3661.1 (see D1/VM1). Requirements for ramps and stairways are given in Paragraphs 3.1.4 and 4.1.4.

COMMENT:
1. Access routes to which the public have access include walking surfaces such as decks, patios and steps on the approach to the main entrance to Housing, and common areas of Communal Residential and Multi-unit dwelling accommodation.
2. For other access routes a coefficient of friction of less than 0.4 may be acceptable, but account should be taken of the effectiveness of the surface when worn or wet.

2.1.2 For a level access route which is intended to remain dry under normal usage, any of the commonly used walking surfaces listed in Table 2 will provide adequate slip resistance (\(\mu > 0.4 \)).

COMMENT:
1. A cleaning regime should be established by the building owner to effectively maintain the slip resistance of the walking surface.
2. Whenever a normally dry surface is wet, such as from cleaning or isolated spillage, at a time when the public have access, adequate signage should be used to identify the hazard. (Many walking surfaces which are slip resistant in the dry become very slippery when wet and can be the cause of slip injuries as pedestrians are unaware of the rapid change of slip resistance and have not altered their gait accordingly.)
3. Slipping may still occur on slip resistant walking surfaces as other factors such as the use of unsuitable footwear or unusual gaits also influence slip resistance.

2.1.3 The walking surface for a level access route which may become wet during normal usage (for example, outdoor access routes or entranceways where water can be tracked indoors when it is raining) shall be selected from the list of acceptable wet slip resistant surfaces given in Table 2.

COMMENT:
1. Testing as prescribed by D1/VM1 may be used to supplement Table 2.
2. The manner in which a surface wears will affect the slip resistance. This is particularly relevant to wet slip resistant surfaces if wear results in a polishing of the surface.
3. Allowing the surface texture to become clogged with dirt (through inadequate cleaning regimes) or the buildup of polishes or waxes can similarly impair slip resistance. (This comment is applicable for both dry and wet surfaces.) Guidance on the maintenance of slip resistance is given in AS/NZS 3661.2.
Table 2: Acceptable Slip Resistance for Walking Surfaces

<table>
<thead>
<tr>
<th>Walking surface</th>
<th>Level surface</th>
<th>Sloping surface or stairs</th>
<th>Typical values for coefficient of friction (wet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acceptable dry slip resistance</td>
<td>Acceptable wet slip resistance</td>
<td>Acceptable dry slip resistance</td>
</tr>
<tr>
<td>Timber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncoated smooth</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Uncoated profiled</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>– across profile</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>– along profile</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Coated (paint, polyurethane, etc)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Coated and sand/grit impregnated</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Portland cement concrete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smooth trowelled finish (Class U3)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Broomed (Class 5 or 6) or wood float finish (Class U2)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Coated (paint, polyurethane, etc)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Coated and sand/grit impregnated</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Exposed aggregate finish – rounded aggregate</td>
<td>Yes</td>
<td>Test</td>
<td>Yes</td>
</tr>
<tr>
<td>– crushed aggregate</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Asphaltic concrete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Marble and granite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polished surface</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Honed finish</td>
<td>Yes</td>
<td>Test</td>
<td>Yes</td>
</tr>
<tr>
<td>Flamed finish</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Fully sandblasted surface</td>
<td>Yes</td>
<td>Test</td>
<td>Yes</td>
</tr>
<tr>
<td>Patterned sandblasted surface</td>
<td>Yes</td>
<td>Test</td>
<td>Yes</td>
</tr>
<tr>
<td>Split slate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Test</td>
<td>Yes</td>
<td>Test</td>
</tr>
<tr>
<td>Terrazzo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polished</td>
<td>Yes</td>
<td>Test</td>
<td>No</td>
</tr>
<tr>
<td>Honed</td>
<td>Yes</td>
<td>Test</td>
<td>Yes</td>
</tr>
<tr>
<td>Sandstone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Test</td>
</tr>
<tr>
<td>Ceramic tiles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unglazed – smooth finish</td>
<td>Yes</td>
<td>Test</td>
<td>Yes</td>
</tr>
<tr>
<td>– profiled</td>
<td>Yes</td>
<td>Test</td>
<td>Yes</td>
</tr>
<tr>
<td>– grit finish</td>
<td>Yes</td>
<td>Test</td>
<td>Yes</td>
</tr>
<tr>
<td>Glazed – smooth or polished finish</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>– profiled</td>
<td>Yes</td>
<td>Test</td>
<td>Yes</td>
</tr>
<tr>
<td>– grit finish</td>
<td>Yes</td>
<td>Test</td>
<td>Yes</td>
</tr>
<tr>
<td>Clay pavers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wire cut</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Smooth texture</td>
<td>Yes</td>
<td>Test</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 2: Acceptable Slip Resistance for Walking Surfaces (cont’d)

<table>
<thead>
<tr>
<th>Walking surface</th>
<th>Level surface</th>
<th>Sloping surface or stairs</th>
<th>Typical values for coefficient of friction (wet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acceptable dry slip resistance</td>
<td>Acceptable wet slip resistance</td>
<td>Acceptable dry slip resistance</td>
</tr>
<tr>
<td>Concrete pavers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry press concrete</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Interlocking concrete block paving</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Moulded surface (e.g. simulated slate or concrete cobbles)</td>
<td>Yes</td>
<td>Test</td>
<td>Yes</td>
</tr>
<tr>
<td>Compressed fibre-cement sheet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncoated</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Coated (paint, polyurethane, etc)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Coated and sand impregnated</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Rubber tiles/sheeting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smooth</td>
<td>Yes</td>
<td>Test</td>
<td>Yes</td>
</tr>
<tr>
<td>Profilled</td>
<td>Yes</td>
<td>Test(^{14})</td>
<td>Yes</td>
</tr>
<tr>
<td>Vinyl and linoleum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smooth or with imprinted pattern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profilled (studs or ribs)</td>
<td>Yes</td>
<td>Test(^{10})</td>
<td>Yes</td>
</tr>
<tr>
<td>Grit/flaked finish</td>
<td>Yes</td>
<td>Test</td>
<td>Yes</td>
</tr>
<tr>
<td>Carpet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tufted or loop pile(^{13})</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Artificial turf(^{13})</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Timber composites (chipboard, cork tiles, etc)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncoated</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Coated (paint, polyurethane, etc)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Coated and sand/grit impregnated(^{5})</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Anti-slip tapes(^{14})</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

See page 20 for notes to Table 2.
2.1.4 Except in Housing, the transition zone between any part of the access route which is intended to remain dry under normal usage and that part of the access route which may become wet during normal usage shall be provided with:

a) Water absorbent matting across the width of the effective walkway with a sufficient dimension in the direction of pedestrian traffic to remove water which may be tracked by footwear, or

b) An extension of the wet slip resistant walking surface for sufficient distance from the point at which water can be tracked indoors (normally from the entrance portal) to allow water to be shed from footwear, or

c) A combination of a) and b) above.

COMMENT:
1. The dimension of the transition zone in the direction of pedestrian traffic is dependent upon the usage, however either:

a) The absorbent matting should be of sufficient size to allow for at least one (preferably two) contacts between each foot with normally spaced footfalls. (As a guide, the minimum dimension is 1.8 m, but this could be reduced if the design of the entranceway restricts the spacing of the footfalls, e.g. an entranceway incorporating a revolving door), or

b) The wet slip resistant walking surface should extend typically 6 m to 10 m from the entrance portal.

2. The absorbent matting should be either fixed in place (e.g. by a mat well) or should adequately grip the underlying flooring and should be of a design (e.g. with a heavy rubber backing) which will not curl up at the edges.

3. A cleaning/replacement regime should be established by the building operator to ensure the ongoing effectiveness of the matting.
2.2 Width

2.2.1 The clear width of an accessible route shall be no less than 1200 mm.

COMMENT:
Handrails and other minor obstructions complying with Paragraphs 1.5.1 and 1.5.2 are permitted to intrude into this width.

2.3 Protection from falling

2.3.1 Where the surface of an accessible route is more than 25 mm above the adjacent ground, protection is to be provided by either a 75 mm upstand (kerb) or a low barrier rail.

3.0 Ramps

3.1 Slope

3.1.1 The maximum acceptable slopes for ramps are given in Table 3. The choice of slope must take account of the type of use and risk of slipping.

3.1.2 Service ramps steeper than 1 in 8 shall have footholds complying with Figure 8 and Table 4.

3.1.3 Accessible ramps shall have an upstand no less than 75 mm in height on any drop-off side of a ramp (see Figure 9).

<table>
<thead>
<tr>
<th>Type of ramp</th>
<th>Maximum slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessible ramp</td>
<td>1:12</td>
</tr>
<tr>
<td>Common ramp subject to wetting</td>
<td>1:10</td>
</tr>
<tr>
<td>Common ramp normally dry</td>
<td>1:8</td>
</tr>
<tr>
<td>Service ramps</td>
<td>1:3</td>
</tr>
</tbody>
</table>

Table 3: Acceptable Ramp Slopes

<table>
<thead>
<tr>
<th>Ramp slope</th>
<th>Spacing (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goods carried</td>
<td>No goods carried</td>
</tr>
<tr>
<td>1:6</td>
<td>360</td>
</tr>
<tr>
<td>1:5</td>
<td>330</td>
</tr>
<tr>
<td>1:4</td>
<td>300</td>
</tr>
<tr>
<td>1:3</td>
<td>280</td>
</tr>
</tbody>
</table>

Table 4: Foothold Spacing for Service Ramps

Figure 8: Service Ramps Footholds

Paragraph 3.1.2
3.1.4 Slip resistance – Any slip resistant surface complying with Table 2 is acceptable for the ramp surface.

COMMENT:
1. The slopes to which Table 2 applies are limited. See Notes 1 and 2 to that table. The minimum mean slip resistance permitted by AS/NZS 3661.1 for sloping surfaces increases with the gradient of the surface. (See D1/VM1.)
2. Glazed or polished walking surfaces are normally unsuitable for common ramps (see Table 2, Notes).
3. Comments to Paragraphs 2.1.2, 2.1.3 and 2.1.4 for level access routes also apply to common ramps.

3.2 Width
The clear width of an accessible ramp shall be 1200 mm.

3.3 Landings
3.3.1 Landings shall be level, and be provided at the top and bottom of all ramps. For any ramp steeper than 1 in 33, intermediate landings are to be provided at the vertical intervals given in Table 5 and Figure 9.

Figure 9: Accessible Ramps
Paragraphs 3.1.3, 3.3.1, 3.3.3, 6.0.3, 6.0.4 and 7.0.2
3.3.2 Landing width shall be no less than the minimum width of the ramp it serves.

3.3.3 Landing length shall comply with Table 5 and Figure 9.

3.4 Kerb ramps

3.4.1 Kerb ramps (see Figure 10) shall have:
 a) A slope of no greater than 1 in 8, and
 b) Colour and texture contrast with the adjacent footpath.

Table 5: Landings

<table>
<thead>
<tr>
<th>Ramp type</th>
<th>Maximum rise between landings (mm)</th>
<th>Length of landing (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessible</td>
<td>750(^{\text{th}})</td>
<td>1200</td>
</tr>
<tr>
<td>Other</td>
<td>1500</td>
<td>Ramp width but need not be greater than 900</td>
</tr>
</tbody>
</table>

Note:
1. 750 mm is the reasonable maximum level difference for a person to negotiate in a wheelchair.

4.0 Stairways

4.1 Pitch, risers and treads

4.1.1 Acceptable stairway pitch line slopes, and step riser heights are given in Table 6 and Figure 11.

COMMENT:
1. The values given in Table 6 are based on recent research in North America. The often used design rule of twice the rise plus the going (2R+G) does not always lead to safe stairway geometry and can exclude some safe moderate pitch stairs.
2. Stairs having a pitch line slope of less than 23° do not permit a person to use the stair with an acceptable gait. Dangerous falls occur where the rhythm of movement is broken.

4.1.2 The method of measuring risers and treads is shown in Figure 12. If a landing on an outside stairway is formed by ground sloping across the width of the flight, the rise is measured at mid-width.

4.1.3 Uniformity – Riser height and tread depth for all steps in one flight, shall be uniform within the tolerance of ± 5 mm measured at the centreline on straight flights and at the pitch line on curved and spiral flights.

COMMENT:
The foot is normally only lifted a few mm above the treads during ascent. A minor variation in riser height can cause someone to stumble.

Table 6: Design Limits for Stairs

<table>
<thead>
<tr>
<th>Stair</th>
<th>Maximum pitch</th>
<th>Maximum riser height (mm)</th>
<th>Minimum tread (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service, minor private</td>
<td>47°</td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td>Secondary private</td>
<td>41°</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>Common and main private</td>
<td>37°</td>
<td>190</td>
<td>280</td>
</tr>
<tr>
<td>Accessible</td>
<td>32°</td>
<td>180</td>
<td>310</td>
</tr>
</tbody>
</table>
Figure 11: Pitch, Risers and Treads for Stairs
Paragraphs 4.1.1, 4.1.4, 4.4.2, 4.5.1 a) and Figure 17

Example of accessible stairway
For a riser height of 160mm, pitch line slope of 27° and tread projection of 25mm, the design tread depth is 340mm.
Figure 12: Measurement of Rise and Tread Depth
Paragraphs 4.1.2 and 4.1.6

(a) Closed risers

(b) Open risers

Not permitted for accessible stairways

Figure 13: Accessible Stairway Projections
Paragraph 4.1.7

Dimensions for rounded leading edge of stairs

75mm max.
4.1.4 Stair treads – Acceptable stair treads (see Figure 11) have:

a) A tread depth of no less than that specified in Table 6,

b) A level surface,

c) Slip resistant surfaces complying with Table 2.

COMMENT:

1. Adequate tread depth is essential for stairway safety. Analysis of stairway related accidents shows that overstepping of treads is a common cause of accidents.

2. Glazed or polished surfaces are normally unsuitable for stair treads unless the stairs are fitted with slip resistant nosings. (See Table 2, Notes 3 and 7.)

4.1.5 Service stairs having treads less than 250 mm in depth shall have open risers.

4.1.6 Tread projection – Figure 12 illustrates acceptable projections for the leading edge of successive stair treads. Limiting dimensions are:

a) For open risers – 15 mm minimum and 25 mm maximum,

b) For closed risers – nil projection minimum, and 25 mm maximum.

4.1.7 Leading edges of treads or nosings (if any) on accessible stairways shall:

a) Be rounded to avoid a sharp edge (see Figure 13), and

b) Be colour contrasted with the rest of the tread.

COMMENT:

Visibility of the stair tread is essential for stair safety. The difference between two dark colours does not necessarily provide sufficient tonal contrast to allow the edge of the tread to be seen by a person with impaired vision. The lighting levels required by Paragraph 4.5 are essential for stairway safety.

4.1.8 Open risers

a) To prevent children falling or becoming held fast, the space between treads shall not permit the passage of a 100 mm sphere in areas frequented by children under 4, or a 130 mm sphere where frequented by children of 4 and 5 years of age.

b) Open risers are not to be used within accessible stairways, and may be used on common stairways only if both the following criteria are satisfied:

i) there is an accessible stairway available as an alternative, and

ii) leading edges of the nosings are colour contrasted with the rest of the tread.

COMMENT:

1. Paragraph 4.1.8 a) does not apply to stairs within Industrial Buildings, Outbuildings or Ancillary buildings, or other stairways in areas not frequented by children under 6 years of age.

2. Open risers are hazardous to ambulant people with disabilities. People who wear leg braces or prosthetic devices need a solid riser to guide the foot up over the riser to the next step and to maintain balance.

4.2 Width

4.2.1 The acceptable width between handrails of a common stairway or accessible stairway, is no less than 900 mm.

COMMENT:

While no minimum width is given for stairways within household units it should be noted that:

C/AS1 Table 3.2 requires any stairway which is an escape route in purpose group SR (Multi-unit dwellings) to be no less than 850 mm wide. This is also a practical minimum requirement for any private stairway.

Narrow private stairways can make the movement of furniture difficult, if not impossible.
4.3 Landings

4.3.1 Landings required – Landings shall be provided at the top and bottom of every flight of stairs, ramp or ladder, or where a door opens into the stairway. A landing need not be provided between a flight and a door where the rise of the flight is no more than 600 mm and the door slides or opens away from the steps (see Figure 14).

4.3.2 The maximum rise between successive landings shall comply with Table 7. (See also Figure 25.)

4.3.3 Landing width shall be no less than the minimum width of the access route it serves.

4.3.4 Landing length shall be no less than 900 mm.

4.3.5 Obstructions – Landings shall be clear of any permanent obstruction. A clear space of at least 400 mm across the full width of the landing shall be available beyond the outer arc formed by any opening door (see Figure 15).

4.3.6 Arresting a falling user – The line of sight between landings more than 8.0 m apart vertically shall be broken by one or more of the following methods:

 a) Off-setting the alignment of adjacent flights.
 b) Changing the direction of at least one flight by a minimum angle of 30° (see Figure 16).
 c) Providing a landing of no less than 1800 mm in length.

<table>
<thead>
<tr>
<th>Stairway type</th>
<th>Maximum rise between landings (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private</td>
<td>4.0</td>
</tr>
<tr>
<td>Service</td>
<td>4.0</td>
</tr>
<tr>
<td>Common</td>
<td>2.5</td>
</tr>
<tr>
<td>Accessible</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Figure 16: Stairway Direction Changes at Landings
Paragraph 4.3.6
Direction changes limit the potential accident fall distances to one flight.

(a) Change in direction within a stairway

(b) Offset within stairway

Figure 17: Curved Stairway with Tapered Treads
Paragraphs 4.4.1 a) and b) and 4.5.2

Note: Treat depth and riser height measured on the pitch line shall comply with Table 6 and Figure 11.

(a) Spiral stairway width less than 1000mm
(Private and service stairway only)

(b) Curved stairway width 1000mm or greater
(Acceptable as an accessible stairway where handrails are installed on both sides as shown)
4.4 Curved and spiral stairways

4.4.1 Curved and spiral stairways
with tapered treads shall have their pitch line located:

a) For a spiral stairway of width less than 1000 mm – as shown in Figure 17 (a), and
b) For a curved stairway of width 1000 mm or greater – as shown in Figure 17 (b).

BS 5395: Part 2 is an acceptable solution for spiral stairways having a diameter of no less than 1500 mm.

4.4.2 Consecutive tapered treads shall have uniform taper angles. Pitch line slope, riser height and tread depth along both pitch lines shall comply with Table 6 and Figure 11.

4.5 Stair winders

4.5.1 Winders are acceptable on private stairways and service stairways provided that all the following conditions are satisfied:

a) Riser heights and tread depths on the pitch line comply with Table 6 and Figure 11.

b) Riser height is uniform and the same as that on the adjoining straight flights of stairs.

c) Tread depth on the pitch line is no less than that on adjoining straight flights of stairs.

d) Winders have a uniform taper angle.

e) Consecutive winders do not turn through an angle of more than 180º.

4.5.2 For a stairway width of less than 1000 mm the pitch line shall be located as shown in Figure 18. For widths of 1000 mm or more, the pitch line shall be located as shown in Figure 17 (b).

4.5.3 BS 585: Part 1 is an acceptable solution for winders on stairways having a width of between 770 and 1200 mm.

4.6 Visibility of stair treads

4.6.1 To ensure that the leading edge of stair treads can be easily seen, the lighting levels given in Table 8 shall be provided.
4.6.2 Except for external private stairways, switches for stairway lighting shall be able to be activated at:
 a) The top of the stairway,
 b) The bottom of the stairway, and
 c) Any intermediate landings having access to or from any floor.

5.0 Fixed Ladders

5.1 General

5.1.1 Types of fixed ladders
 a) Step-type ladders (see Figure 19),
 b) Rung-type ladders (see Figure 20),
 c) Individual rung-type ladders (see Figure 24).

Rung-type ladders shall not be used where frequent access and the carriage of tools, equipment or materials are required.

COMMENT:
1. Where ladders are proposed, due consideration needs to be given to all relevant factors affecting the user’s safety including:
 – the reason for access (e.g. plant servicing or inspection of passive building elements such as roofs)
 – the intended frequency of use
 – the need to carry tools or materials by hand.

 Rung-type ladders are not considered suitable for any part of an access route to a lift machine room or similar mechanical plant room where service access is required at least monthly and tools or materials need to be carried. Rung-type ladders are however considered appropriate to areas such as roofs, pits, silos, towers, chimneys and tanks where access is required infrequently and tools and materials are only occasionally carried.

2. Ladders are acceptable in Housing for access to infrequently used spaces such as attics and lofts.

5.1.2 Ladder enclosures

 People shall be protected from falling from all fixed ladders which rise more than 6.0 m above the ground level or rise from a landing or platform. An acceptable solution for safety hoops and longitudinal straps (see Figure 21) shall have:
 a) Hoops and straps fabricated from 50 mm x 8 mm grade 250 steel,
 b) Hoops dimensioned as shown in Figure 21, and spaced at no more than 1000 mm intervals,
 c) The highest hoop level with the top of the barrier on the platform being accessed, and
 d) The lowest hoop 2.5 m above the ground or platform.

Table 8: Lighting for Stairways

<table>
<thead>
<tr>
<th>Luminaire type</th>
<th>Lighting output Watts/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Private and service stairways</td>
</tr>
<tr>
<td>Incandescent (plastic shade)</td>
<td>20</td>
</tr>
<tr>
<td>Incandescent (general diffusing enclosure)</td>
<td>25</td>
</tr>
<tr>
<td>Fluorescent 36/58 W cool white (enclosed diffusing fitting)</td>
<td>7</td>
</tr>
<tr>
<td>Fluorescent compact single ended 16-38 W (enclosed diffusing fitting)</td>
<td>10</td>
</tr>
<tr>
<td>Discharge 50/80 W mercury or high pressure sodium (enclosed diffusing fitting)</td>
<td>7</td>
</tr>
</tbody>
</table>

Notes:
The values given are based on:
– 150 lux at tread level for accessible and common stairways.
– 100 lux at tread level for private and service stairways.
– A stair lobby 7 m by 4 m including two landings and a single flight of stairs.
– Light coloured walls and ceilings and medium coloured floors.
5.1.3 **Location** – A fixed ladder within an access route shall be located to avoid danger to persons working or walking beneath the ladder while it is being climbed.

5.1.4 **Landing width** shall be no less than the width of the ladder it serves.

5.1.5 **Landing length** shall be the width of the ladder it serves, but no less than 1.5 m if required by Paragraph 5.1.7.

![Figure 19: Step-type Ladder](image)
5.1.6 Uniformity – The distance between successive rungs or treads within the same ladder installation must be uniform within a tolerance of ± 5.0 mm.

5.1.7 Arresting a falling user – An installation with more than one ladder section and a total height exceeding 6.0 m, shall in addition to a ladder enclosure, have:

a) A direction change between successive ladders at each landing, or

b) Successive ladders offset at each landing (see Figure 20), or

c) Landings no less than 1.5 m long.
5.2 **Step-type ladders**

5.2.1 Step-type ladders (see Figure 19) shall have:

a) **A slope** of between 60° and 70° from the horizontal,

b) **Treads** no less than 100 mm wide and spaced evenly at between 200 mm and 250 mm centres,

c) **A width** between stiles of no less than 450 mm,

d) **A height** between landings of no more than 6.0 m,

e) **Clearances** of at least:
 i) 50 mm for hand movement along the handrail,
 ii) 50 mm between the treads and any solid objects behind the ladder,

f) **Horizontal openings at landings** of not less than 1150 mm (see Figure 19), and

g) **Handrails** which:
 i) are fitted on both sides of the ladder,
 ii) are spaced between 550 mm and 750 mm apart,
 iii) are located at a vertical distance above the stile of no more than 450 mm,
 iv) commence no less than 900 mm above floor level,
 v) extend above the upper landing by no less than 900 mm to connect with a barrier (if any), and
 vi) are constructed to comply with Paragraphs 6.0.1 to 6.0.6.

Figure 22: Step Through Access to Landings from Rung-type Ladders

Paragraphs 5.3.1 and 5.3.2

![Diagram of step-type ladders with specifications highlighted.](attachment:diagram.png)
5.3 Rung-type ladders

5.3.1 Rung-type ladders (see Figures 20, 22 and 23) shall have:

a) A pitch line slope of between 70° and 90° from the horizontal,

b) Rungs of no less than 20 mm diameter and spaced evenly at between 250 mm and 300 mm centres,

c) A width between stiles of no less than 350 mm or more than 500 mm,

d) A height between landings of no more than 9 m, and

e) Clearances of at least:
 i) 750 mm between the rungs and any obstruction behind the climber,
 ii) 300 mm from the ladder centre line to each side,
 iii) 50 mm for hand movement along the stiles where the stiles extend above a landing, and
iv) 200 mm between the rungs and any solid objects behind the ladder.

5.3.2 Access to landings (see Figures 22 and 23).

a) Ladder stiles shall extend to the height of the barrier, but no less than 900 mm above the landing.

b) Toeboards shall not extend across ladder openings.

c) For step-through access, stile spacing above the landing shall be between 500 mm and 700 mm, and the top rung either level with, or one full rise below, the landing.

d) For side access to landings, the spacing from the nearest stile to the landing shall be between 150 mm and 300 mm, and the top rung must be level with the landing.

5.4 Individual rung-type ladders

5.4.1 Individual rung-type ladders (see Figure 24) shall have:

a) Rungs of no less than 25 mm diameter, shaped to prevent the foot slipping off sideways, and spaced evenly at between 250 mm and 350 mm centres,

b) A tread width on each rung of between 300 mm and 550 mm, except that for staggered rungs this may be reduced to 200 mm, and

c) Height and clearance limitations as for rung-type ladders (see Paragraphs 5.3.1 d) and e)).

6.0 Handrails

6.0.1 All accessible stairways shall have handrails on both sides (see Paragraph 6.0.3). All other stairways with a width of 2.0 m or less and having two or more risers, shall have handrails on at least one side. For a stairway of two or three risers within, or giving access to a household unit, the handrail may be omitted.

COMMENT:

1. Wherever possible, handrails should be continuous on all access routes. On private stairways a handrail may be considered continuous if the continuity is interrupted by newel posts.

2. A single riser is an isolated step which by NZBC D1.3.3 i) is permitted only within Detached dwellings or within household units of Multi-unit dwellings, and in Outbuildings and Ancillary buildings.
Figure 25: Handrails and Landings for Stairways and Ramps
Paragraphs 1.5.2, 4.3.2, 6.0.2, 6.0.3, 6.0.4 and 6.0.5

- Centre handrail may project into landing
- 900mm min, 1000mm max
- 8.0m max without a change in direction
- 2.5m max for accessible stairways and common stairways
- 4.0m max for other types of stairways
- Extension on accessible stairways 300mm min
6.0.2 Any stairway which exceeds 2.0 m in width shall:
 a) Have handrails on both sides and, where the width exceeds 4.0 m, shall also have an intermediate handrail provided at the centre of the stairway, or
 b) If the stairway is essentially an outdoor architectural feature and not required to be an accessible stairway, have at least one handrail.

 Examples of such stairways are those leading to civic areas, or to decks on Housing.

 COMMENT:
 A central rail gives all users a rail to use for safety purposes. On stairways in public buildings, such as sports stadia, intermediate rails are also effective for crowd control. The 2.0 m width is a comfortable width for three people, two of whom can grasp a rail if anyone trips.

6.0.3 Accessible stairways and accessible ramps – Handrails shall be provided on both sides of accessible stairways and on both sides of accessible ramps where the ramp slope is steeper than 1 in 20. The handrails shall be continuous except where doors are located on landings (see Figures 9 and 25).

6.0.4 Slope of handrails – Handrails shall have the same slope as the pitch line, begin no further than the second riser from the lower end of the stairway, and extend the full length of the stairway they serve. Except that, where the handrail serves an accessible stairway or accessible ramp, a 300 mm (minimum) horizontal extension shall be provided at each end of the handrail, as shown in Figures 9 and 25.

6.0.5 The first riser shall be located a sufficient distance back from the corner where the two walls meet, to accommodate the extended handrail, as shown in Figure 25.

6.0.6 Height of handrails – Handrails shall be positioned between 900 mm and 1 m above the pitchline (see Figure 25).

6.0.7 Handrail profiles – Handrails shall have a profile which can be readily grasped by an adult hand and shall be installed in a way that avoids the likelihood of personal injury. An acceptable handrail shall be shaped and located to ensure that, under normal usage, a person’s hand will not contact adjacent walls, supporting brackets or fixings, or any other obstruction.

 COMMENT:
 It is important that in the event of stumbling on a stairway or ramp an adult, even with a small hand, can firmly grasp the handrail to prevent a fall. Refer to B1/AS2 for handrail structural design requirements.

6.0.8 A graspable handrail profile shall have:
 a) A flat or convex upper surface,
 b) Arrised or radiused edges,
 c) A minimum cross section width of 20 mm, and
 d) A “relevant width” (as illustrated in Figure 26 (a)) across the top surface of no greater than 80 mm. Figure 26 (a) and (b) indicates some acceptable profiles but others may also be acceptable.

6.0.9 Acceptable handrail profiles for accessible stairways and accessible ramps are shown in Figure 26 (b).

 COMMENT:
 In most circumstances a handrail is used with a light grip to steady the user of a stairway or ramp. Ambulant people with disabilities use handrails for both leverage and support, and wheelchair users often need to firmly grip the rails to pull themselves along, particularly on ramps. In those circumstances a profile offering an adequate grip is important.
Figure 26: Handrail Profiles and Clearances
Paragraphs 6.0.8 and 6.0.9

- RW shall not exceed 80 mm.
- RW (relevant width) is measured around the upper surface perimeter of the handrail section between the vertical tangents on either side.
- Variations in shape are acceptable provided the effective grip is not reduced. For example, the side faces shown as vertical in details (i) and (iv) are still acceptable even if slightly curved or sloped up to 8° from vertical.
- See fig. 26 (b) for wall clearances.

(a) Determination of relevant width for private and common stairways

(b) Acceptable profiles and clearances for accessible stairways
7.0 Doors and Openings

7.0.1 Lobby doors – Where doors open into a lobby, the clear space between open doors shall comply with Figure 27. Where doors, including those providing access to sanitary facilities, are used within an accessible route and a person must open the door towards the wheelchair, an unobstructed wall space of not less than 300 mm shall be provided at the side of the door adjacent the handle (see Figure 27 (b)).

COMMENT:
1. People with disabilities generally find sliding doors more convenient than hinged doors.
2. Sliding doors may be installed in places where a hinged door would otherwise hinder circulation or manoeuvrability, but may only be installed in accordance with any requirements for escape routes.

7.0.2 Other doors where located on accessible routes shall comply with Figure 9.

7.0.3 Width – Accessible doors shall have at least 760 mm clear opening.

7.0.4 Visibility – Doors which swing in both directions shall incorporate glazing to provide adequate visibility for a person using the door. Acceptable glazing is shown in Figure 28. Accessible doors shall be of a colour that contrasts with their surroundings.

COMMENT:
1. Glass doors set in a largely glazed wall and wooden panel doors set in a similarly panelled wall are difficult to locate by those with visual impairment.
2. Door handles should contrast with the door.

7.0.5 Door handles – Accessible doors shall be openable with one hand and have a lever action operation for handles, locks and latches. Handles shall be between 900 mm and 1200 mm above floor level. Pull handles or push plates are acceptable only where doors are not latched.

COMMENT:
1. People who use wheelchairs must have one hand free to propel the chair through the open door.
2. Door knobs with a twist or turn action do not provide an adequate grip for people with hand impairments.

7.0.6 Revolving doors and turnstiles – Where revolving doors or turnstiles are used within an accessible route, an alternative hinged or sliding door shall be provided (see Figure 29).

7.0.7 Frameless glass doors shall comply with NZBC F2.

8.0 Places of Assembly

8.1 Spaces for wheelchairs

8.1.1 The number of spaces in rooms and areas used for public meetings, entertainment, and assembly, shall be provided on the scale of 2 for up to 250 seats provided, plus 1 for every additional 250 seats.

8.1.2 Spaces for wheelchairs shall be located immediately adjacent to other seating, as shown in Figure 30.

8.2 Access to performance areas

8.2.1 An accessible route shall be provided to a podium or stage area.

9.0 Accessible Accommodation Units of Communal Residential Buildings

9.1 Number of units to be provided

9.1.1 The number of accessible accommodation units to be provided in hotels, motels and other Communal Residential buildings providing accommodation for the public shall be no less than that given in Table 9.
Figure 27: Doors and Openings
Paragraph 7.0.1

(a) Access route

(b) Accessible route

Figure 28: Acceptable Glazing for Visibility
Paragraph 7.0.4

Figure 29: Revolving Door with Accessible Side Hung Door
Paragraph 7.0.6
9.2 Facilities to be provided

9.2.1 Accessible accommodation units shall have:

a) Toilet and bathroom facilities complying with G1/AS1.

c) Bedrooms, sitting and dining areas with sufficient floor area for a 1500 mm diameter wheelchair turning circle.
10.0 Movement of Vehicles

10.1 Car parking areas

10.1.1 AS 2890: Part 1 as modified by Paragraph 10.2 is an acceptable solution for car parking areas and circulation routes.

COMMENT:
The width of an accessible car park is given in AS 2890.1 Figure 2.2 as 3.2 m, but it is noted in 2.4.1 (b) (ii) of the Standard that if there is an adjacent obstruction the width of all car parks should be increased by 300 mm. In the case of an accessible car park an obstruction would include a kerb or garden which would prevent the movement of a wheelchair.

10.2 Modifications to AS 2890

10.2.1 AS 2890: Part 1 is modified as follows:

Clause 4.7 Lighting: After final sentence add a new sentence – “These lighting provisions may exceed the performance criteria of NZBC D1 and G8.”

Appendix C: Delete and replace with:

“Accessible car parking spaces shall be provided on the scale of:
1 for up to 10 total spaces provided
2 for up to 100 total spaces provided
plus 1 more for every additional 50 spaces when car parks are provided in or associated with a building which is accessible.”

11.0 Alternative Acceptable Solutions

11.0.1 Accessible routes – The access provisions of NZS 4121 are an acceptable solution for accessible routes, but may exceed the requirements of NZBC D1.

11.0.2 Commercial vehicles – AS 2890: Part 2 is an acceptable solution for loading spaces and circulation routes for commercial vehicles, but may exceed the requirements of NZBC D1.

11.0.3 Access routes for service and maintenance personnel – NZS/AS 1657 is an acceptable solution for fixed platforms, walkways, stairways, and ladders, but provisions may exceed the requirements of NZBC D1.

12.0 Lifts

12.0.1 For the purposes of determining whether a lift must be provided for people with disabilities to access upper floors, the design occupancy shall be determined using C/AS1 Paragraph 2.3.7 and Table 2.2.

COMMENT:
Alternative design occupancies being less than derived from Table 2.2, must be justified with clear supporting information. Table 2.2 already takes account of effective floor area reductions for normal furnishings associated with a given activity, such as desks or workstations in offices. However, in a factory situation with fixed machinery, actual operator numbers may be acceptable as the occupant load.

12.0.2 Building size may also be used to determine the need for a lift for people with disabilities. NZS 4121 is an acceptable solution based on gross floor area.
Index D1/VM1 & AS1

All references to Verification Methods and Acceptable Solutions are preceded by VM or AS respectively.

Access routes ... AS1 1.1.5, 1.2.2, 1.4.1, 1.5.1, 1.5.3 a), 1.5.4, 1.5.5, 1.6.1, 1.7.1, 1.8.1, 2.0, 5.1.3, 10.1.4, Figure 27

see also Level access routes

service and maintenance personnel AS1 11.0.4

Accessible accommodation units AS1 9.0, 9.1, 9.1.1, 9.2.1, Table 9

facilities ... AS1 9.2

bedrooms ... AS1 9.2.1 c)

dining areas ... AS1 9.2.1 c)

kitchens .. AS1 9.2.1 b)

sitting areas .. AS1 9.2.1 c)

toilets and baths .. AS1 9.2.1 a)

Accessible routes AS1 1.1.1, 1.1.2, 1.1.3, 1.5.5 b), 2.1.1, 2.2.1, 2.3.1, 7.0.1, 7.0.6, 11.0.1, Figure 27

access to performance areas AS1 8.2

Accessible units .. AS1 1.1.3

Alternative solutions AS1 11.0

Barriers .. AS1 1.7

see also Handrails

Buildings ... AS1 1.1.1, 1.1.2, 1.1.4

entrances ... AS1 10.1.3

Communal residential buildings AS1 9.0, 9.1.1

Community service buildings AS1 1.1.3

Doors .. AS1 7.0, Figure 27

accessible doors ... AS1 7.0.3, 7.0.4, 7.0.5

frameless glass doors AS1 7.0.7

glazing .. AS1 7.0.4, Figure 28

handles .. AS1 7.0.5

lobby doors ... AS1 7.0.1

revolving doors ... AS1 7.0.6, Figure 29

turnstiles .. AS1 7.0.6

visibility ... AS1 7.0.4

width ... AS1 7.0.3

Escape routes .. AS1 1.1.5
Handrails .. AS1 1.5.2, 1.5.4 b), 1.6.1, 1.7, 5.2.1 g), 6.0, 6.0.1, 6.0.2, Figures 6 and 19
clearances .. AS1 6.0.7, Figure 26
handrail profiles AS1 6.0.7, 6.0.8, 6.0.9, Figure 26
height .. AS1 6.0.6, Figure 25
horizontal extensions AS1 6.0.4, 6.0.5, Figure 25
intermediate handrails AS1 6.0.2
relevant width AS1 6.0.9, Figure 26
slope ... AS1 6.0.4

Height clearances AS1 1.4, 1.4.1, Figure 3, Table 1

Hotels .. AS1 9.1.1

Kerbs .. AS1 1.5.4 a), Figure 6
see also Ramps

Ladders ... AS1 5.0, 5.1.1
height .. AS1 5.1.2, 5.1.7
individual rung-type ladders AS1 5.1.1 c), 5.4, Figure 24
clearance .. AS1 5.4.1 c
height .. AS1 5.4.1 c
rungs ... AS1 5.4.1 a)
tread width AS1 5.4.1 b)
width ... AS1 5.4.1 b)
landings .. AS1 5.3.2
length ... AS1 5.1.5, 5.1.7
width .. AS1 5.1.4
location .. AS1 5.1.3
rung spacing AS1 5.1.6
rung-type ladders AS1 5.1.1 b), 5.3, Figure 20
clearances .. AS1 5.3.1 e
height .. AS1 5.3.1 d
landings .. AS1 5.3.2, Figure 23
rungs ... AS1 5.3.1 b)
slope ... AS1 5.3.1 a)
width .. AS1 5.3.1 c)
safety enclosures AS1 5.1.2, Figures 21, 22
step-type ladders AS1 5.1.1 a), 5.2, 5.2.1 a), Figure 19
clearances .. AS1 5.2.1 e
height .. AS1 5.2.1 d
horizontal openings AS1 5.2.1 f
slope .. AS1 5.2.1 a)
treads ... AS1 5.2.1 b)
width .. AS1 5.2.1 c)
types of ladders AS1 5.1.1
<table>
<thead>
<tr>
<th>Topic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level access routes</td>
<td>AS1 2.0</td>
</tr>
<tr>
<td>protection from falling</td>
<td>AS1 2.3</td>
</tr>
<tr>
<td>slip resistance</td>
<td>AS1 2.1, Table 2</td>
</tr>
<tr>
<td>width</td>
<td>AS1 2.2</td>
</tr>
<tr>
<td>Lifts</td>
<td>AS1 12.0</td>
</tr>
<tr>
<td>Lighting</td>
<td>AS1 1.5.4, 1.8</td>
</tr>
<tr>
<td>Location</td>
<td>AS1 1.1</td>
</tr>
<tr>
<td>Motels</td>
<td>AS1 9.1.1</td>
</tr>
<tr>
<td>Obstructions</td>
<td>AS1 1.5</td>
</tr>
<tr>
<td>dangerous projections</td>
<td>AS1 1.5.4, Figure 6</td>
</tr>
<tr>
<td>isolated columns</td>
<td>AS1 1.5.5, Figure 7</td>
</tr>
<tr>
<td>major projections</td>
<td>AS1 1.5.3, Figure 5</td>
</tr>
<tr>
<td>minor projections</td>
<td>AS1 1.5.1, 1.5.2, Figure 4</td>
</tr>
<tr>
<td>Occupancy</td>
<td>AS1 12.0</td>
</tr>
<tr>
<td>Openings</td>
<td>AS1 7.0.1</td>
</tr>
<tr>
<td>People with disabilities</td>
<td>AS1 1.1.4, Table 9</td>
</tr>
<tr>
<td>Places of assembly</td>
<td>AS1 8.0</td>
</tr>
<tr>
<td>Principal entrance</td>
<td>AS1 1.1</td>
</tr>
<tr>
<td>Ramps</td>
<td>AS1 1.3.1, 1.3.2, 3.0</td>
</tr>
<tr>
<td>accessible ramps</td>
<td>AS1 3.1.3, 6.0.2, 6.0.3,</td>
</tr>
<tr>
<td></td>
<td>6.0.4, Figure 9</td>
</tr>
<tr>
<td>slopes</td>
<td>AS1 Table 3</td>
</tr>
<tr>
<td>width</td>
<td>AS1 3.2</td>
</tr>
<tr>
<td>intermediate landings</td>
<td>AS1 3.3.1, Table 5</td>
</tr>
<tr>
<td>length</td>
<td>AS1 3.3.3</td>
</tr>
<tr>
<td>width</td>
<td>AS1 3.3.2</td>
</tr>
<tr>
<td>kerb ramps</td>
<td>AS1 3.4, Figure 10</td>
</tr>
<tr>
<td>landings</td>
<td>AS1 3.3, Figure 25</td>
</tr>
<tr>
<td>service ramps</td>
<td>AS1 3.1.2, Figure 8, Table 4</td>
</tr>
<tr>
<td>slip resistance</td>
<td>AS1 3.1.4, Table 2</td>
</tr>
<tr>
<td>slopes</td>
<td>AS1 3.1, 3.1.1</td>
</tr>
<tr>
<td>Signs</td>
<td>AS1 1.1.1</td>
</tr>
<tr>
<td>Slip resistance</td>
<td>VM1 1.0, AS1 2.1, 3.1.4, 4.1.4 c), Table 2</td>
</tr>
<tr>
<td>Slopes</td>
<td>AS1 1.2</td>
</tr>
<tr>
<td>acceptable slopes</td>
<td>AS1 1.2.1, Figure 2</td>
</tr>
<tr>
<td>changes in level</td>
<td>AS1 1.3, 1.3.1</td>
</tr>
<tr>
<td>cross falls</td>
<td>AS1 1.2.2</td>
</tr>
</tbody>
</table>
Stairways ... AS1 4.0
 accessible stairways AS1 4.1.7, 4.1.8 bl), 4.2.1, 6.0.1, 6.0.2,
 6.0.3, 6.0.4, Figure 11,
 Tables 6, 7, 8
 common stairways AS1 4.1.8, 4.2.1, Figure 11, Tables 6, 7, 8
 curved stairways AS1 4.1.3, 4.4, Figure 17
Stairways (continued)
 landings AS1 4.3, 4.3.1, 4.3.6 c), 4.6.2 c), Figures 14, 25
 direction changes AS1 Figure 16
 length AS1 4.3.4, 4.3.6 c)
 maximum rise AS1 4.3.2, Table 7
 obstructions AS1 4.3.5, Figure 15
 width AS1 4.3.3
lighting AS1 4.5, 4.5.2, Table 8
pitch .. AS1 4.1, Figure 11, Table 6
pitch lines AS1 4.1.3, 4.4.1, 4.4.2, 4.5.1, 4.5.2
private stairways AS1 4.6.2, Figure 11, Tables 6, 8
 main .. AS1 Figure 11, Table 6
 minor AS1 4.5.1, Figure 11, Table 6
 secondary AS1 4.5.1, Figure 11, Table 6
 risers AS1 4.1, 4.1.2, 4.1.3, 4.1.8,
 4.4.2, 4.5.1, Figures 11, 12, Table 6
 service stairs AS1 4.5.1, Figure 11, Tables 6, 8
 slip resistance AS1 4.1.4 c), Table 2
spiral stairs AS1 4.1.3, 4.4.1
treads .. AS1 4.1, 4.1.2, 4.1.3, 4.1.4,
 4.1.5, 4.1.6, 4.1.7, 4.5.1, 4.6,
 Figures 11, 12, 13, Table 6
tapered treads AS1 4.4, Figure 17
visibility AS1 4.3.6, 4.6, Table 8
width AS1 4.2, 4.2.1, 4.4.1, 4.5.2, 4.5.3, 6.0.1
winders AS1 4.5, Figure 18

Structural stability AS1 1.6

Thresholds AS1 1.3.2

Turnstiles See Doors

Vehicles AS1 10.0
 accessible car parking AS1 10.1, 10.2
 car parking areas AS1 10.1
 commercial vehicles AS1 11.0.2
 loading spaces AS1 11.0.2

Weather stops AS1 1.3.2

Wheelchairs AS1 7.0.1
 spaces for wheelchairs AS1 8.1, 8.1.2, Figure 30