
<table>
<thead>
<tr>
<th>Section</th>
<th>Previous Amendment</th>
<th>November 2019 Amendment 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title pages</td>
<td>Remove title page, document history and status pages 1–4</td>
<td>Replace with new title page, document history and status pages 1–4</td>
</tr>
<tr>
<td>References</td>
<td>Remove page 11/12</td>
<td>Remove page 11/12</td>
</tr>
<tr>
<td>H1/VM1</td>
<td>Remove page 17/18</td>
<td>Replace with new page 17/19</td>
</tr>
<tr>
<td>H1/AS1</td>
<td>Remove pages 19–22</td>
<td>Replace with new pages 19–22</td>
</tr>
</tbody>
</table>
Document Status

The most recent version of this document (Amendment 19), as detailed in the Document History, is approved by the Chief Executive of the Ministry of Business, Innovation and Employment. It is effective from 28 November 2019 and supersedes all previous versions of this document.

The previous version of this document (Amendment 18) will cease to have effect on 31 March 2020, except for the Definition of Good ground in B1/AS1, which will cease to have effect on 29 November 2021.

People using this document should check for amendments on a regular basis. The Ministry of Business, Innovation and Employment may amend any part of any Verification Method or Acceptable Solution at any time. Up-to-date versions of Verification Methods and Acceptable Solutions are available from www.building.govt.nz

B1: Document History

<table>
<thead>
<tr>
<th>Date</th>
<th>Alterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>First published</td>
<td>July 1992</td>
</tr>
<tr>
<td>Amendment 1</td>
<td>September 1993 p. ix–xii, References p. 1, 1.3, 1.4.1–1.4.3, 2.1, 2.2, 3.1–3.3, 4.1, 5.1 p. 2, 6.1, 6.2, 8.1, 9.1 p. 4, 11.1, 12.1 p. 5, 1.2, 2.1, 2.2, 3.1, 3.2, 4.1, 4.2, 6.1, 6.2, 7.1</td>
</tr>
<tr>
<td>Amendment 2</td>
<td>19 August 1994 pp. i and ii, Document History pp. vii and viii, Contents pp. x and xi, References p. xiv, Definitions p. 1, 1.4.2, 5.1 p. 2, 6.1 p. 5, 1.3, 3.1, 4.1 p. 6, 7.1 p. 10, 2.3.5 p. 12, Figure 3 p. 13, Figure 4 p. 14, 2.3.6, 2.3.7</td>
</tr>
<tr>
<td>Reprinted incorporating Amendments 1 and 2</td>
<td>October 1994 p. 15, Tables 4 and 5 pp. 21, 2.4.1 p. 22, Figure 3 pp. 32, 2.2.4 pp. 33, 1.0.2 pp. 34, 3.2.1, Table 1 pp. 35, 4.1, 4.1.2, 4.1.3, 4.2.1, 4.2.2, 4.3, 4.3.1, 5.0.1, Table 2 pp. 36, 6.1.2, 7.1, 7.1.1 pp. 37, 7.3.4 pp. 49, 50, 51, 54, Index</td>
</tr>
<tr>
<td>Amendment 3</td>
<td>1 December 1995 p. ii, Document History p. ix, References p. 1, 3.1 p. 5, 6.2 p. 50, Index</td>
</tr>
<tr>
<td>Reprinted incorporating Amendments 1, 2 and 3</td>
<td>July 1996</td>
</tr>
<tr>
<td>Erratum</td>
<td>9 February 2001 p. 46, 4.3.2 a) i)</td>
</tr>
<tr>
<td>Amendment 5 incorporating Erratum</td>
<td>1 July 2001 p. 2, Document Status p. 3, Document History p. 7, References p. 41, 1.7.2 Comment p. 49, 2.2.4 p. 48, 1.9.1 b) i)</td>
</tr>
<tr>
<td>Amendment 6</td>
<td>1 March 2005 p. 11, References</td>
</tr>
<tr>
<td>Amendment 7</td>
<td>1 April 2007 pp. 11–12, 14, References pp. 15–16, Definitions p. 18, 6.1</td>
</tr>
</tbody>
</table>
B1: Document History

<table>
<thead>
<tr>
<th>Amendment</th>
<th>Date</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amendment 10 (Canterbury)</td>
<td>Effective from 19 May 2011 until 31 January 2012</td>
<td>p. 9, Contents, p. 12–14, References, p. 15, Definitions, p. 17, B1/VM1</td>
</tr>
<tr>
<td>Amendment 11</td>
<td>Effective from 1 August 2011 until 14 August 2014</td>
<td>p. 9, Contents, p. 11–14, References, p. 17–22B, B1/VM1 1.0, 2.0, 2.2.9, 2.2.14C, 5.2, 6.1, 7.1, 8.1, 12.1, 13.0</td>
</tr>
<tr>
<td>Amendment 12</td>
<td>Effective from 14 February 2014 until 31 May 2016</td>
<td>p. 9, Contents, pp. 15, 16, Definitions, pp. 17, 18, 20, 22, 22A, 22B, B1/VM1 2.1, 2.2.6, 2.2.11, 5.2, 9.0, 12.1</td>
</tr>
<tr>
<td>Amendment 13</td>
<td>Effective from 1 June 2016 until 30 May 2017</td>
<td>p. 13, References, p. 24, B1/AS1 7.3.3, 7.3.4</td>
</tr>
<tr>
<td>Amendment 14</td>
<td>Effective from 4 November 2016 until 30 May 2017</td>
<td>p. 9, Contents, p. 14 References, p. 22 B1/VM1 3.1 dl, Effective from 1 January 2017 until 30 May 2017, p. 22C VM1 14.1.1</td>
</tr>
<tr>
<td>Amendment 16</td>
<td>Effective 3 April 2018 until 31 March 2019</td>
<td>p. 9 Contents, pp. 11–14A References, p. 18 B1/VM1 2.2.5</td>
</tr>
<tr>
<td>Amendment 17</td>
<td>Effective from 30 November 2018 until 31 October 2019</td>
<td>p. 11–13 References, p. 17 B1/VM1 2.1</td>
</tr>
<tr>
<td>Amendment 18</td>
<td>Effective from 27 June 2019 until 31 March 2020 except for Definition of Good ground in B1/AS1 (effective until 29 November 2021)</td>
<td>p. 9 Contents, pp. 12, 14A References, pp. 21, 22A B1/VM1 3.1.1, 3.1.2, 5.3</td>
</tr>
<tr>
<td>Amendment 19</td>
<td>Effective 28 November 2019</td>
<td>p. 9 Contents, pp. 11–14A References, p. 15 Definitions, p. 21 B1/VM1 5.1.1</td>
</tr>
<tr>
<td>Erratum 1</td>
<td>30 September 2010</td>
<td>p. 21, B1/VM1 3.1</td>
</tr>
</tbody>
</table>

Page numbers relate to the document at the time of Amendment and may not match page numbers in current document.
Contents

<table>
<thead>
<tr>
<th>References</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definitions</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verification Method B1/VM1</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>17</td>
</tr>
<tr>
<td>1.0 General</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.0 Structural Design Actions Standards</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0 Concrete</td>
<td>21</td>
</tr>
<tr>
<td>3.1 NZS 3101: Part 1</td>
<td>21</td>
</tr>
<tr>
<td>4.0 Concrete Masonry</td>
<td>21</td>
</tr>
<tr>
<td>4.1 NZS 4230</td>
<td>21</td>
</tr>
<tr>
<td>5.0 Steel</td>
<td>21</td>
</tr>
<tr>
<td>5.1 NZS 3404: Part 1</td>
<td>21</td>
</tr>
<tr>
<td>5.2 AS/NZS 4600</td>
<td>22A</td>
</tr>
<tr>
<td>6.0 Timber</td>
<td>22A</td>
</tr>
<tr>
<td>6.1 NZS 3603</td>
<td>22A</td>
</tr>
<tr>
<td>7.0 Aluminium</td>
<td>22A</td>
</tr>
<tr>
<td>7.1 AS/NZS 1664.1</td>
<td>22A</td>
</tr>
<tr>
<td>8.0 Earth Buildings</td>
<td>22B</td>
</tr>
<tr>
<td>8.1 NZS 4297</td>
<td>22B</td>
</tr>
<tr>
<td>9.0 Foundations</td>
<td>22B</td>
</tr>
<tr>
<td>9.1 NZS 4431</td>
<td>22B</td>
</tr>
<tr>
<td>10.0 Siteworks</td>
<td>22B</td>
</tr>
<tr>
<td>10.1 NZS 4431</td>
<td>22B</td>
</tr>
<tr>
<td>11.0 Drains</td>
<td>22B</td>
</tr>
<tr>
<td>11.1 NZS/AS 3725</td>
<td>22B</td>
</tr>
<tr>
<td>12.0 Windows</td>
<td>22C</td>
</tr>
<tr>
<td>12.1 NZS 4211</td>
<td>22C</td>
</tr>
<tr>
<td>13.0 Seismic Performance of Engineering Systems in Buildings</td>
<td>22C</td>
</tr>
<tr>
<td>13.1 NZS 4219</td>
<td>22C</td>
</tr>
<tr>
<td>14.0 Ductile Steel Mesh</td>
<td>22C</td>
</tr>
<tr>
<td>14.1 Grade 500E welded steel mesh</td>
<td>22C</td>
</tr>
</tbody>
</table>

3.0 Timber	23A
3.1 NZS 3604	23A
3.2 Slab-on-ground in expansive soils	23C

| 4.0 Earth Buildings | 23G |
| 4.1 NZS 4299 | 23G |

| 5.0 Stucco | 23G |
| 5.1 NZS 4251 | 23G |

6.0 Drains	23H
6.1 AS/NZS 2566.1	23H
6.2 AS/NZS 2566.2	23H
6.3 AS/NZS 2032	23H
6.4 AS/NZS 2033	23H

| 7.0 Glazing | 24 |
| 7.1 NZS 4223 | 24 |

8.0 Small Chimneys	24
9.0 Steel	24
9.1 NASH Standard Part 2 Light Steel Framed Buildings	24

<table>
<thead>
<tr>
<th>Verification Method B1/VM2</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timber Barriers</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acceptable Solution B1/AS2</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timber Barriers</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verification Method B1/VM3</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Chimneys</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acceptable Solution B1/AS3</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Chimneys</td>
<td>37</td>
</tr>
</tbody>
</table>
Scope

1.0 Chimney Construction

- **1.1 General**
- **1.2 Chimney wall thickness**
- **1.3 Foundations**
- **1.4 Hearths**
- **1.5 Chimney breasts**
- **1.6 Reinforcing**
- **1.7 Chimney restraint**
- **1.8 Materials and construction**
- **1.9 Systems to resist horizontal earthquake loadings**

2.0 Solid Fuel Burning Domestic Appliances

- **2.1 Chimneys**
- **2.2 Hearth slab**

Verification Method B1/VM4 Foundations

- **1.0 Scope and limitations**
- **2.0 General**
- **3.0 Shallow Foundations**
- **3.1 General provisions**
- **3.2 Ultimate and design bearing strength and design bearing pressure**
- **3.3 Ultimate limit state bearing strength for shallow foundations**
- **3.4 Ultimate limit state sliding resistance**
- **3.5 Strength reduction factors**
- **4.0 Pile Foundations**
- **4.1 Ultimate vertical strength of single piles**
- **4.2 Column action**
- **4.3 Ultimate lateral strength of single piles**
- **4.4 Pile groups**
- **4.5 Downdrag**
- **4.6 Ultimate lateral strength of pile groups**
- **4.7 Strength reduction factors**

5.0 Pile Types

- **5.1 Concrete piles**
- **5.2 Steel piles**
- **5.3 Timber piles**

Appendix A (Informative)

- **A1.0 Site Investigations**

Appendix B (Informative)

- **B1.0 Serviceability Limit State Deformations (Settlement)**

Appendix C (Informative)

- **C1.0 Description of Wall, Limit States and Soil Properties**
- **C2.0 Earth Pressure Coefficients**
- **C3.0 Load Factors and Strength Reduction Factors**
- **C4.0 Notation**
- **C5.0 Loadings**
- **C6.0 Surcharge Pressures at Toe**
- **C7.0 First Ultimate Limit State (short term static foundation bearing failure)**
- **C8.0 Second Ultimate Limit State (short term static foundation sliding failure)**
- **C9.0 Third Ultimate Limit State (short term foundation bearing failure under EQ)**
- **C10.0 Fourth Ultimate Limit State (short term foundation sliding failure under EQ)**
- **C11.0 Fifth Ultimate Limit State (long term foundation bearing failure)**
- **C12.0 Sixth Ultimate Limit State (long term foundation sliding failure)**
- **C13.0 Comments**

Acceptable Solution B1/AS4 Foundations

- **(Revised by Amendment 4)**

Index

- **(Revised by Amendment 4)**
References

For the purposes of New Zealand Building Code compliance, the acceptable New Zealand and other Standards, and other documents referred to in these Verification Methods and Acceptable Solutions (primary reference documents) shall be the editions, along with their specific amendments, listed below. Where the primary reference documents refer to other Standards or other documents (secondary reference documents), which in turn may also refer to other Standards or other documents, and so on (lower order reference documents), then the applicable version of these secondary and lower order reference documents shall be the version in effect at the date these Verification Methods and Acceptable Solutions were published.

Standards New Zealand

AS/NZS 1163: 2016 Cold-formed structural steel hollow sections
 Amend: 1

AS/NZS 1170: Structural design actions –
 Part 0: 2002 General principles
 Amend: 1
 Part 1: 2002 Permanent imposed and other actions
 Amend: 1
 Part 2: 2011 Wind actions
 Amend: 1
 Part 3: 2003 Snow and ice actions
 Amend: 1

NZS 1170: Structural design actions –
 Part 5: 2004 Earthquake actions – New Zealand

AS/NZS 1554: Structural steel welding
 Part 1: 2014 Welding of steel structures
 Amend: 1

AS/NZS 1594: 2002 Hot-rolled steel flat products

AS/NZS 1664: Aluminium structures –
 Part 1: 1997 Limit state design
 Amend: 1

AS/NZS 1748:- Timber – Stress graded for structural purposes
 Part 1: 2011 General requirements
 Amend: 1
 Part 2: 2011 Qualification of grading method
 Amend: 1

AS/NZS 2032: 2006 Installation of PVC pipe systems
 Amend: 1

Straton 2013: 2013 Commercial lighting

Where quoted

VM1 5.1.1
VM1 1.0, 2.1, 2.2, 5.2, 6.1, 7.1, 8.1
AS1 7.2, 7.3
VM4 2.0, B1.0
VM1 2.1, 2.2

COMMENT

The above suite of Structural Design Action Standards, together with their amendments, are referred to collectively as “AS/NZS 1170”.

AS/NZS 1163: 2016 Cold-formed structural steel hollow sections
 Amend: 1

AS/NZS 1170: Structural design actions –
 Part 0: 2002 General principles
 Amend: 1
 Part 1: 2002 Permanent imposed and other actions
 Amend: 1
 Part 2: 2011 Wind actions
 Amend: 1
 Part 3: 2003 Snow and ice actions
 Amend: 1

NZS 1170: Structural design actions –
 Part 5: 2004 Earthquake actions – New Zealand

AS/NZS 1554: Structural steel welding
 Part 1: 2014 Welding of steel structures
 Amend: 1

AS/NZS 1594: 2002 Hot-rolled steel flat products

AS/NZS 1664: Aluminium structures –
 Part 1: 1997 Limit state design
 Amend: 1

AS/NZS 1748:- Timber – Stress graded for structural purposes
 Part 1: 2011 General requirements
 Amend: 1
 Part 2: 2011 Qualification of grading method
 Amend: 1

AS/NZS 2032: 2006 Installation of PVC pipe systems
 Amend: 1

Straton 2013: 2013 Commercial lighting
<table>
<thead>
<tr>
<th>Reference</th>
<th>Where quoted</th>
<th>Amends</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS/NZS 2033: 2008 Installation of polyethylene pipe systems</td>
<td>AS 1 6.4</td>
<td>1, 2</td>
</tr>
<tr>
<td>AS/NZS 2327: 2017 Composite structures – Composite steel-concrete construction in buildings</td>
<td>VM 1 5.1.4A</td>
<td></td>
</tr>
<tr>
<td>Part 2: 2002 Installation</td>
<td>AS 1 6.2</td>
<td></td>
</tr>
<tr>
<td>AS/NZS 2918: 2001 Domestic solid fuel heating appliances installation</td>
<td>AS 3 3.2.1, 2.2.4</td>
<td></td>
</tr>
<tr>
<td>NZS 3101:- Concrete structures standard Part 1: 2006 The design of concrete structures</td>
<td>VM 1 3.1, 11.1</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>NZS 3106: 2009 Design of concrete structures for the storage of liquids.</td>
<td>VM 1 3.2</td>
<td></td>
</tr>
<tr>
<td>NZS 3109: 1997 Concrete construction</td>
<td>AS 3 1.8.2, 1.8.5 b), 2.2.1 c), 2.2.3</td>
<td>1, 2</td>
</tr>
<tr>
<td>NZS 3112:- Methods of test for concrete Part 2: 1986 Tests relating to the determination of strength of concrete</td>
<td>AS 3 1.8.3 c)</td>
<td>1, 2</td>
</tr>
<tr>
<td>NZS 3404:- Steel structures standard Part 1: 1997 Steel structures standard</td>
<td>VM 1 5.1</td>
<td>1, 2</td>
</tr>
<tr>
<td>SNZ TS 3404: 2018 Durability requirements for steel structures and components</td>
<td>VM 1 5.1.9A</td>
<td></td>
</tr>
</tbody>
</table>
| NZS 3603: 1993 Timber structures standard | VM 1 6.1, VM 4 5.3.1 | 1, 2 (Applies to building work consented prior to 1 April 2007)
Amend: 1, 2, 4 (Applies to building work consented on or after 1 April 2007) |
<p>| NZS 3604: 2011 Timber framed buildings | AS 1 4.3, 3.2, 4.1, AS 3 1.1.1, 1.9.1 b), 1.9.2, 1.9.5, 2.2.1 b), | |
| NZS 3605: 2001 Timber piles and poles for use in building | VM 4 5.3.1 | |</p>
<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Amendments</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZS 3622: 2004</td>
<td>Verification of timber properties</td>
<td>Amend: 1</td>
</tr>
<tr>
<td>NZS 3640: 2003</td>
<td>Chemical preservation of round and sawn timber</td>
<td>Amends: 1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>AS/NZS 3678: 2016</td>
<td>Structural steel – Hot-rolled plates, floorplates and slabs</td>
<td></td>
</tr>
<tr>
<td>AS/NZS 3679: 2016</td>
<td>Structural steel</td>
<td></td>
</tr>
<tr>
<td>Part 1: 2016</td>
<td>Hot-rolled bars and sections</td>
<td>VM1 5.1.9</td>
</tr>
<tr>
<td>Part 2: 2016</td>
<td>Welded I sections</td>
<td>VM1 5.1.9</td>
</tr>
<tr>
<td>AS/NZS 3725: 2007</td>
<td>Design for installation of buried concrete pipes</td>
<td>VM1 11.1</td>
</tr>
<tr>
<td>AS/NZS 3869: 1999</td>
<td>Domestic solid fuel burning appliances – Design and construction</td>
<td>AS3 2.1</td>
</tr>
<tr>
<td>NZS 4210: 2001</td>
<td>Code of practice for masonry construction: materials and workmanship</td>
<td>AS3 1.8.1, 1.8.3 (f and g)</td>
</tr>
<tr>
<td>NZS 4211: 2008</td>
<td>Specification for performance of windows</td>
<td>VM1 12.1</td>
</tr>
<tr>
<td>NZS 4219: 2009</td>
<td>Seismic Performance of Engineering Systems in Buildings</td>
<td>VM1 1.3.1</td>
</tr>
<tr>
<td>NZS 4223:-</td>
<td>Glazing in buildings</td>
<td></td>
</tr>
<tr>
<td>Part 1: 2008</td>
<td>Glass selection and glazing</td>
<td>AS1 7.1, 7.2.1, 7.3.7</td>
</tr>
<tr>
<td>Part 2: 2016</td>
<td>Insulating glass units</td>
<td>AS1 7.2</td>
</tr>
<tr>
<td>Part 3: 2016</td>
<td>Human impact safety requirements</td>
<td>AS1 7.3</td>
</tr>
<tr>
<td>Part 4: 2008</td>
<td>Wind, dead, snow, and live actions</td>
<td>AS1 7.4</td>
</tr>
<tr>
<td>NZS 4229: 2013</td>
<td>Concrete masonry buildings not requiring specific engineering design</td>
<td>AS1 1.4, 2.1</td>
</tr>
<tr>
<td>NZS 4230: 2004</td>
<td>Design of reinforced concrete masonry structures</td>
<td>VM1 4.0</td>
</tr>
<tr>
<td>NZS 4251:-</td>
<td>Solid plastering</td>
<td>AS1 5.1</td>
</tr>
<tr>
<td>Part 1: 2007</td>
<td>Cement plasters for walls, ceilings and soffits</td>
<td></td>
</tr>
</tbody>
</table>
NZS 4297: 1998 Engineering design of earth buildings
NZS 4299: 1998 Earth buildings not requiring specific design
Amend: 1
NZS 4402: Methods of testing soils for civil engineering purposes.
Test 2.2: 1986 Soil classification tests – Determination of liquid limit
Definitions
Test 2.4: 1986 Soil classification tests – Determination of plasticity index
Test 2.6: 1986 Soil classification tests – Determination of the linear shrinkage
Test 2.8.1: 1986 Soil classification tests – Standard method by wet sieving
Test 2.8.2: 1986 Soil classification tests – Standard method by dry sieving
Test 2.8.3: 1986 Soil classification tests – Standard method for fine soils (pipette method)
Test 2.8.4: 1986 Soil classification tests – Subsidiary method for fine soils (hydrometer method)
Test 4.1.1: 1986 Soil compaction tests – Determination of the dry density/water content relationship – New Zealand standard compaction test
Test 4.2.1: 1988 Soil compaction tests – Determination of the minimum and maximum dry densities and relative density of a cohesionless soil – Minimum dry density
Test 4.2.2: 1988 Soil compaction tests – Determination of the minimum and maximum dry densities and relative density of a cohesionless soil – Maximum dry density
Test 4.2.3: 1988 Soil compaction tests – Determination of the minimum and maximum dry densities and relative density of a cohesionless soil – Relative density
Test 5.1.1: 1986 Soil density tests – Determination of the density of soil – Sand replacement test for the determination of in situ density
NZS 4431: 1989 Code of practice for earth fill for residential development
Amend: 1
AS/NZS 4600: 2005 Cold-formed steel structures
Amend: 1
AS/NZS 4671: 2001 Steel Reinforcing Materials
Amend: 1
AS/NZS 4680: 2006 Hot-Dip Galvanised (zinc) Coating
AS/NZS 5131: 2016 Structural steelwork – Fabrication and erection
Amend: 1

Where quoted
VM1 8.1
AS1 1.4, 4.1
VM1 11.1
Definitions
VM1 11.1
Definitions
VM1 11.1
VM1 10.1
VM1 5.2
AS1 2.1.5, 3.1.8
AS3 1.8.5, VM1 14.0
AS3 1.8.6
VM1 5.1.3, 5.1.5-5.1.8, 5.1.10-5.1.12

Amend 9
Sep 2016
Amend 10 and 11
Amend 9
Sep 2016
Amend 16
Apr 2018
Amend 10 and 11
Amend 19
Nov 2019
Amend 16
Apr 2018

28 November 2019
MINISTRY OF BUSINESS, INNOVATION AND EMPLOYMENT
The National Association of Steel Framed Housing Inc (NASH)

NASH Standard Part 2: May 2019 Light Steel Framed Buildings

British Standards Institution

BS 8004: 1986 Code of practice for foundations

BS EN 14399 High-strength structural bolting assemblies for preloading
 Part 1: 2015 General requirements
 Part 2: 2015 Suitability for preloading
 Part 3: 2015 System HR. Hexagon bolt and nut assemblies
 Part 5: 2015 Plain washers

Standards Australia

AS 1391: 2007 Metallic materials – Tensile testing at ambient temperature

AS 1397: 2011 Steel sheet and strip – Hot-dipped zinc-coated or aluminium/zinc-coated

AS 2159: 1995 Rules for the design and installation of piling (known as the SAA Piling Code)
 Amen: 1

American Society of Testing and Materials

ASTM D1143: 1981 Test method for piles under static axial compressive load

New Zealand Geomechanics Society

Guidelines for the field descriptions of soils and rocks in engineering use. Nov 1988

New Zealand Legislation

Chartered Professional Engineers of New Zealand Act 2002

International Organization for Standardization

ISO 15630-2 2010: Steel for the reinforcement and prestressing of concrete – Test Methods – Part 2 Welded Fabric
ISO 17025: 2005 General requirements for the competence of testing and calibration laboratories
Definitions

This is an abbreviated list of definitions for words or terms particularly relevant to these Acceptable Solutions and Verification Methods. The definitions for any other italicised words may be found in the New Zealand Building Code Handbook.

Adequate A *adequate* to achieve the objectives of the *Building Code*.

Alter in relation to a building, includes to rebuild, re-erect, repair, enlarge and extend the building.

Baluster A post providing the support for the top and bottom rails of a barrier.

Boundary joist A joist running along the outer ends of the floor joists.

Building has the meaning ascribed to it by sections 8 and 9 of the Building Act 2004.

Building element Any structural and non-structural component or assembly incorporated into or associated with a building. Included are fixtures, services, drains, permanent mechanical installations for access, glazing, partitions, ceilings and temporary supports.

Canterbury earthquake region is the area contained within the boundaries of the Christchurch City Council, the Selwyn District Council and the Waimakariri District Council.

Chimney A *non-combustible* structure which encloses one or more flues, fireplaces or other heating appliances.

Chimney back The *non-combustible* wall forming the back of a fireplace.

Chimney base That part of a chimney which houses the fireplace.

Chimney jamb The side walls of a fireplace.

Combustible See *non-combustible*.

Construct in relation to a building, includes to design, build, erect, prefabricate, and relocate the building.

Drain A pipe normally laid below ground level including fittings and equipment and intended to convey foul water or surface water to an outfall.

Factor of safety in relation to any building means the ratio of resisting forces to applied forces for a given loading condition. It is generally expressed to two significant figures.

Fireplace A space formed by the chimney back, the chimney jamb, and the chimney breast in which fuel is burned for the purpose of heating the room into which it opens.

Fixture An article intended to remain permanently attached to and form part of a building.

Flue The passage through which the products of combustion are conveyed to the outside.

Gather That part of a chimney where the transition from fireplace to stack occurs.

Good ground means any soil or rock capable of permanently withstanding an ultimate bearing pressure of 300 kPa (i.e. an allowable bearing pressure of 100 kPa using a factor of safety of 3.0), but excludes:

a) Potentially compressible ground such as topsoil, soft soils such as clay which can be moulded easily in the fingers, and uncompacted loose gravel which contains obvious voids,

b) Expansive soils being those that have a liquid limit of more than 50% when tested in accordance with NZS 4402 Test 2.2, and a linear shrinkage of more than 15% when tested, from the liquid limit, in accordance with NZS 4402 Test 2.6, and

c) Any ground which could foreseeably experience movement of 25 mm or greater for any reason including one or a combination of: land instability, ground creep, subsidence, liquefaction, lateral spread, seasonal swelling and shrinking, frost heave, changing ground water level, erosion, dissolution of soil in water, and effects of tree roots.
COMMENT:
Soils (excepting those described in a), b) and c) above) tested with a dynamic cone penetrometer in accordance with NZS 4402 Test 6.5.2, shall be acceptable as good ground for building foundations if penetration resistance is no less than:

a) 5 blows per 100 mm at depths down to twice the footing width.
b) 3 blows per 100 mm at depths greater than twice the footing width.

Depths shall be measured from the underside of the proposed footing.

Hearth The insulating floor under the fire and in front and at the sides of the fireplace.

Intended use, in relation to a building:

a) includes any or all of the following:
 i) any reasonably foreseeable occasional use that is not incompatible with the intended use;
 ii) normal maintenance;
 iii) activities undertaken in response to fire or any other reasonably foreseeable emergency; but

b) does not include any other maintenance and repairs or rebuilding.

Nominal pile width The least width of a pile in side view and is equal to the diameter in round piles.

Non-combustible Materials shall be classified as non-combustible or combustible when tested to: AS 1530 – Part 1.

Other property

a) means any land or buildings, or part of any land or buildings, that are—
 i) not held under the same allotment; or
 ii) not held under the same ownership; and

b) includes a road

Sitework means work on a building site, including earthworks, preparatory to or associated with the construction, alteration, demolition or removal of a building.

Specified intended life has the meaning given to it by section 113(3) of the Building Act 2004.

Section 113(3) states: “(3) In subsection (2), specified intended life, in relation to a building, means the period of time, as stated in an application for a building consent or in the consent itself, for which the building is proposed to be used for its intended use.”

Strength reduction factor The factor by which the ultimate strength is multiplied to obtain the design strength.

COMMENT:
NZS 4203: 1992 uses the terms ideal strength in place of ultimate strength, and dependable strength in place of design strength.

Surface water All naturally occurring water, other than sub-surface water, which results from rainfall on the site or water flowing onto the site, including that flowing from a drain, stream, river, lake or sea.

Territorial authority (TA) means a city council or district council named in Part 2 of Schedule 2 of the Local Government Act 2002; and—

a) in relation to land within the district of a territorial authority, or a building on or proposed to be built on any such land, means that territorial authority; and

b) in relation to any part of a coastal marine area (within the meaning of the Resource Management Act 1991) that is not within the district of a territorial authority, or a building on or proposed to be built on any such part, means the territorial authority whose district is adjacent to that part.

Verification Method means a method by which compliance with the Building Code may be verified.
2.2.15 NZS 1170 Part 5, Clause 4.2 Seismic weight and seismic mass
After: “0.3 is the earthquake imposed action (live load) combination factor for all other applications” add the following:

“except roofs.

ψ_E = 0.0 is the earthquake imposed action (live load) combination factor for roofs.”

2.2.16 NZS 1170 Part 5, Sections 5 and 6
Time history analysis
Time history analysis is not part of this Verification Method.

COMMENT:
Time history analysis is a highly specialised method of assessing structural response to earthquakes. It requires many detailed and interdependent assumptions to be made in relation to the nature of earthquake shaking and its propagation from the source, the properties of the building site and the detailed characteristics of the building and its structural elements.

AS/NZS 1170 outlines the steps for time history analysis in some detail, but the applicability of each step needs to be evaluated on a building-by-building basis. More importantly, the output of the analysis needs to be examined carefully in each particular context.

Time history analysis can be an acceptable aid to verifying compliance with structural requirements provided that:

- It is carried out by specialists with in-depth experience in applying the technique.
- The output of the analysis and the viability of the resulting structural design are reviewed by an independent team experienced in both analysis and design.

2.2.17 NZS 1170 Part 5, Clause 5.2.2.3, equation 5.2(4) Delete equation 5.2(4) and replace with:

\[C_d(T) = \frac{C_e}{S_p} \] \quad 5.2(4)

2.2.18 NZS 1170 Part 5, Clause 6.1.4.1
Requirement for modelling
Delete the last sentence of the first paragraph and replace with:

“The model shall include representation of the diaphragm’s flexibility.”

Delete the third (last) paragraph.

3.0 Concrete

3.1 NZS 3101: Part 1 subject to the following modifications:

3.1.1 Clause 18.7.4.4 Detailing requirements for support of hollow core floors
At the end of Clause 18.7.4.4 (b) add an additional sentence:

“The details given by C18.6.7(e) may be applied to hollow-core units where the depth of the precast unit is equal to or less than 400 mm.”

3.2 NZS 3106

4.0 Concrete Masonry

4.1 NZS 4230

5.0 Steel

5.1 NZS 3404: Part 1 subject to the following modifications:

5.1.1 Clause 2.2.1 Specification
In Clause 2.2.1 a) replace:

“AS 1163 Cold-formed structural steel hollow sections AS 1594 Hot-rolled steel flat products”,

with

“AS/NZS 1163 Cold-formed structural steel hollow sections

AS/NZS 1594 Hot-rolled steel flat products”

5.1.2 Clause 2.3.1 Steel bolts, nuts and washers
In Clause 2.3.1 add the following to the end of the Clause:

“BS EN 14399-3 High-strength structural bolting assemblies for preloading, System HR. Hexagon bolt and nut assemblies”
BS EN 14399-5: High-strength structural bolting assemblies for preloading, Plain washers”

5.1.3 new Clause 3.10 Documentation
Insert the following after clause 3.9:

“Clause 3.10 Documentation
The requirements in AS/NZS 5131 Section 4.1.1 General shall be applied.”

5.1.4 Clause 9.3.1 Bolts and bolting category
In Clause 9.3.1.2 replace:

“and AS 1559”
with

“, AS 1559, BS EN 14399.1, BS EN 14399.2, BS EN 14399.3 and BS EN 14399.5”.

5.1.4A Section 13 Design of composite members and structures
Replace Section 13 Design of composite members and structures with the following:

“13 Design of composite members and structures shall be in accordance with AS/NZS 2327.”

5.1.5 Section 14 Fabrication
Replace Section 14 Fabrication with the following:

“14 Fabrication
The fabrication of steel structures shall be in accordance with AS/NZS 5131.
Construction categories for the purposes of this Standard shall be determined in accordance with Appendix C of AS/NZS 5131.”

5.1.6 Section 15 Erection
Replace Section 15 Erection with the following:

“15 Erection
The erection of steel structures shall be in accordance with AS/NZS 5131.
Construction categories for the purposes of this standard shall be determined in accordance with Appendix C of AS/NZS 5131.”

5.1.7 Section 16 Modification of Existing Structures
Replace Section 16 Modification of existing structures with the following:

“16 Site modifications during erection and modification and repair of existing structures shall be in accordance with AS/NZS 5131 Section 14 Site modifications during erection and modification and repair of existing structures.”

5.1.8 new Section 18 Architecturally Exposed Structural Steelwork
Insert the following after Section 17:

“18 Architecturally exposed structural steelwork
The requirements in AS/NZS 5131 Section 10 Architecturally exposed structural steelwork shall be applied.”

5.1.9 Appendix A
Replace references to AS/NZS 3678, AS/NZS 3769.1 and AS/NZS 3679.2 in NZS 3404 with the 2016 versions that are referenced in this Verification Method

5.1.9A Appendix C
Replace Appendix C Corrosion Protection with the following:

“Appendix C Corrosion Protection
Corrosion protection shall be in accordance with SNZ TS 3404.”

5.1.10 Appendix D
Replace Appendix D Inspection of Welding to AS/NZS 1554.1 with the following:

“Appendix D Inspection of Welding
The recommendations in AS/NZS 5131 Appendix I Inspection of Welding and Bolting. (Informative) should be used.”

5.1.11 Appendix K
Replace Appendix K Standard test for evaluation of slip factor (normative) with the following:

“Appendix K Standard test for evaluation of slip factor (normative)
The requirements in AS/NZS 5131 Appendix G Standard test for evaluation of slip factor shall be used.”

5.1.12 Appendix L
Replace Appendix L Inspection of bolt tension using a torque wrench (informative) with the following”
Acceptable Solution B1/AS1

General

1.0 Explanatory Note

1.1 B1/AS1 contains Acceptable Solutions for Masonry (Paragraph 2.0), Timber (Paragraph 3.0), Earth Buildings (Paragraph 4.0), Stucco (Paragraph 5.0), Drains (Paragraph 6.0), Glazing (Paragraph 7.0) and Steel (Paragraph 9.0).

1.2 B1/AS3 is an Acceptable Solution for small chimneys (referred to in Paragraph 8.0).

1.3 Modifications to the Standards, necessary for compliance with the New Zealand Building Code, are given against the relevant clause number of each Standard.

1.4 Consequential changes due to 2010/11 Canterbury earthquakes

COMMENT:
Raising the seismic hazard factor Z in NZS 1170 Part 5 (Table 3.3) for the Canterbury earthquake region through amendments to B1/VM1 requires consequential amendments to NZS 4229, NZS 3604 and NZS 4299 referenced in B1/AS1.

2.0 Masonry

2.1 NZS 4229 subject to the following modifications:

2.1.1 NZS 4229 Clause 7.8.3
Delete clause 7.8.3.
Replace with:

“All slab-on-ground reinforcing shall extend to within 75 mm of the outside edge of the slab (including the foundation wall) and shall consist of a minimum 2.27kg/m² welded Grade 500E reinforcing mesh sheets (1.14 kg/m² in each direction), which shall be lapped at sheet joints such that the overlap measurement between the outermost cross wires of each fabric sheet is equal to the greater of one of the following:
- the spacing of cross wires plus 50 mm;
- 150 mm; or
- the manufacturer’s requirements.
Slabs shall have a maximum dimension of 18 m between free joints.”

2.1.2 NZS 4229
Foundations where good ground has not been established.

COMMENT:
Foundations for houses built on ground that has the potential for liquefaction or lateral spread are outside the scope of B1/AS1.
The MBIE/MfE guidance document “Planning and engineering guidance for potentially liquefaction-prone land” outlines a risk-based process to identify and manage liquefaction-related risk in land use planning and development decision-making.

For houses built in areas that have the potential for liquefaction, the MBIE guidance document “Repairing and rebuilding houses affected by the Canterbury earthquakes” may be appropriate. This guidance provides a range of potential foundation solutions depending on expected ground movement and available bearing capacity. These parameters also determine the required degree of involvement of structural and geotechnical engineers and the extent of specific engineering design.

2.1.3 NZS 4229 Grade 500E welded steel mesh
Where Grade 500E welded steel mesh is specified, it shall meet the requirements of Paragraph 14.0 in B1/VM1.
3.0 Timber

3.1 NZS 3604 subject to the following modifications:

3.1.1 NZS 3604 Paragraph 1.3 Definitions
Add (in the definition for Good Ground):
“liquefaction, lateral spread,” after “subsidence” in subparagraph (c).

3.1.2 NZS 3604 Section 5 Bracing Design
Make the following amendments:
Amend Figure 5.4, Earthquake zones, so that all the area within the Christchurch City Council boundary is within Zone 2.
Amend Figure 5.4 Earthquake zones, so that the lowest zone within the Selwyn or Waimakariri District Council boundaries is within Zone 2. Areas within Selwyn District that are designated as Zone 1 in NZS 3604 shall become Zone 2.

3.1.2A NZS 3604 Clause 7.4.1.3
Delete Subclause 7.4.1.3 (c).

3.1.2B NZS 3604 Figure 7.10(b)
On the plan view replace the text “2/M12 x 250 mm coach screws at 140 crs” with “2/M12 x 240 mm coach screws at 140 crs vertically.”
On the plan view replace “2/M12 at 400 crs” twice with “2 M12 bolts at 140crs vertically to capture end joist laminations and blocking, and boundary joist laminations and blocking, at post centrelines.”
Add to Note 3: “All coach screws to have 50 x 50 washers.”

3.1.2C NZS 3604 Figure 7.10(c)
On the plan view insert the text “At each strap location (at joist ends and nogging), 2/M12 x 240 mm long coach screws are required.”
On the plan view, replace the text “2/M12 x 250 mm coach screws at 140 crs vertically” with “2/M12 x 200 mm coach screws at 140 crs vertically.”
On the section view, replace the text “M12 x 200 mm coach screws at 400 crs vertically” with M12 x 240 mm coach screws at 140 crs vertically.
Delete “2/M12 bolts at 400crs” which tie laminations together along edge joists and along boundary joists.

3.1.3 NZS 3604 Clause 7.5.2.3
Delete: Clause 7.5.2.3
Replace with: “Clause 7.5.2.3 The combined foundation and edge details shall be constructed as shown in Figures 7.13(B), 7.14(B) or (C) (and Figures 7.15(B) and 7.16(B) or (C) for foundations supporting a masonry veneer).”

3.1.4 NZS 3604 Figure 7.13
Delete: Figure 7.13(A) – Foundation edge details – In situ concrete – Dimensions & reinforcing for single storey.
Amend title of Figure 7.13(B) to “Dimensions & reinforcing for 1 or 2 storeys”.

3.1.5 NZS 3604 Figure 7.14
Delete: Figure 7.14(A) – Foundation edge details – Concrete masonry – Single storey
Amend title of Figure 7.14(B) to “1 or 2 storeys”, and add a note: “for a single storey foundation, 15 Series masonry may be used and the minimum footing width may be 190 mm”.

COMMENT:
Unreinforced and untied slab to footing single storey option removed.

3.1.6 NZS 3604 Figure 7.15
Delete: Figure 7.15(A) – Masonry veneer foundation edge details – Dimensions and reinforcement for single storeys.
COMMENT:
Unreinforced and untied slab to footing single storey options removed.

3.1.7 NZS 3604 Figure 7.16
Delete: Figure 7.16 (A) – Masonry veneer foundation edge details – Concrete masonry – Single storey.

COMMENT:
Unreinforced and untied slab to footing single storey option removed.

3.1.8 NZS 3604 Clause 7.5.8.1
Delete: Clause 7.5.8.1
Replace with: “Clause 7.5.8.1 All slab-on-ground floors shall be reinforced concrete in accordance with Clauses 7.5.8.3, 7.5.8.4 and 7.5.8.6.4. All reinforcing steel, including welded mesh, shall be Ductility Class E in accordance with AS/NZS 4671.”

Where Grade 500E welded steel mesh is specified, it shall meet the requirements of Paragraph 14.0 in B1/VM1.

3.1.9 NZS 3604 Clause 7.5.8.3
Delete: Clause 7.5.8.3
Replace with: “Clause 7.5.8.3 All slab-on-ground reinforcing shall extend to within 75 mm of the outside edge of the slab (including the foundation wall) and shall consist of a minimum 2.27 kg/m² welded reinforcing mesh sheets (1.14 kg/m² in each direction), which shall be lapped at sheet joints such that the overlap measurement between the outmost cross wires of each fabric sheet is equal to the greater of one of the following:
- the spacing of cross wires plus 50 mm,
- 150 mm or
- the manufacturer’s requirements.
Slabs shall have a maximum dimension of 24 m between free joints.”

3.1.10 NZS 3604 Clause 7.5.8.6.2
Delete: Clause 7.5.8.6.2

3.1.11 NZS 3604 Figure 7.18
Delete title: Figure 7.18 – Irregular slab (plan view) (see 7.5.8.6.2)
Replace with: “Figure 7.18 – Irregular slab (plan view) (see 7.5.8.6.4)”.

3.1.12 NZS 3604 Clause 7.5.8.6.3
Delete: Clause 7.5.8.6.3.

3.1.13 NZS 3604 New Clause
Add new: “Clause 7.5.8.8 Free Joints.
At free joints, slab reinforcement shall be terminated and there shall be no bonding between vertical concrete faces (prevented by using building paper or a bituminous coating). R12 dowel bars 600 mm long shall be placed at 300 mm centres along the free joint and lapped 300 mm with slab reinforcement on both sides of the joint. All dowel bars on one side of the joint shall have a bond breaker applied, e.g. by wrapping dowel bars for 300 mm with petrolatum tape. Joint dowel bars must be installed in a single plane, in true alignment and parallel.”

3.1.14 NZS 3604 Foundations where good ground has not been established

COMMENT:
Foundations for houses built on ground that has the potential for liquefaction or lateral spread are outside the scope of B1/AS1.

The MBIE/MfE guidance document “Planning and engineering guidance for potentially liquefaction-prone land” outlines a risk-based process to identify and manage liquefaction-related risk in land use planning and development decision-making.

For houses built in areas that have the potential for liquefaction, the MBIE guidance document “Repairing and rebuilding houses affected by the Canterbury earthquakes” may be appropriate. This guidance provides a range of potential foundation solutions depending on expected ground movement and available bearing capacity. These parameters also determine the required degree of involvement of structural and geotechnical engineers and the extent of specific engineering design.
3.2 Slab-on-ground in expansive soils

3.2.1 NZS 3604 Clause 1.1.2 Buildings covered by this Standard
Amend 1.1.2(a) to read:
“Buildings founded on good ground or on expansive soils where the requirements of 1.1.5 are met”

3.2.2 NZS 3604 New Clause
Add new: “Clause 1.1.5 Buildings on expansive soils
Buildings on expansive soils shall be supported on slab-on-ground foundations complying with 7.5.13 and in addition to 1.1.2 shall be limited as follows:
(a) single storey, stand-alone household unit, and
(b) maximum length or width of floor of 24.0 m including any attached garage, and
(c) simple plan shapes such as rectangular, L, T or boomerang, and
(d) concrete slab-on-ground with a minimum thickness of 100 mm and a minimum concrete compressive strength of 20 MPa, and
(e) simple roof forms, incorporating hips, valleys, gables or mono pitches, and
(f) maximum overall height of 7.0 m to roof apex from lowest cleared ground level, and
(g) maximum roof height of 3.0 m, and
(h) roof slope between 10° and 35° from the horizontal, and
(i) maximum span of roof truss 12.0 m, and
(j) external walls maximum of 2.4 m height studs, other than gable end walls and walls to mono-pitched roofs, which shall not exceed 4.0 m.

COMMENT:

Floor plans
Where floor plans incorporate re-entrant corners then continuity of the exterior ground beam shall be maintained by continuing it as an internal beam, with the exterior beam details continued for a length of at least 1.0 m into the internal beam. This is only applicable where internal beams are specified in Tables 7.4A and 7.4B. This is aimed to bring the solution in NZS 3604 in line with Clause 5.3.8 of AS 2870:2011.

3.2.3 NZS 3604 Clause 7.5.1
Add the following paragraph at the end of Clause 7.5.1:
“Slabs on expansive soils for buildings meeting the requirements of 1.1.5 shall, in addition to meeting the requirements of 7.5.1 to 7.5.12, meet the requirements of 7.5.13. Where there is conflict the requirements of 7.5.13 shall apply.”

3.2.4 NZS 3604 New clause, tables and figures
Add new: Clause 7.5.13 Slab-on-ground in expansive soils

7.5.13.1 Identification of expansive soils
7.5.13.1.1 Should reasonable enquiry as outlined in 3.1.3 show any signs of expansive soils, the expansive soil class, as defined in AS 2870, shall be established by one or all of:
(a) enquiry to the local territorial authority, and/or
(b) reference to the certificate of suitability issued in terms of NZS 4431, and/or
(c) a soil test undertaken by a suitably qualified soils engineer.

7.5.13.1.2 Expansive soil class shall be defined as:
(a) Slightly ‘S’, having an \(l_{ss} \) range of 0–1.9%, and a 500 year design characteristic surface movement return \((y_S) \) of 22 mm, or
(b) Moderately ‘M’, having an \(l_{ss} \) range of 2.0–3.7% and a 500 year design characteristic surface movement return \((y_S) \) of 44 mm, or
(c) Highly ‘H’, having an \(I_{SS} \) range of 3.8–6.5% and a 500 year design characteristic surface movement return \((y_g) \) of 78 mm, or

(d) Extremely ‘E’, having an \(I_{SS} \) range of 6.6–7.5% and a 500 year design characteristic surface movement return \((y_g) \) of 90 mm.

7.5.13.2 Maximum aspect ratio of concrete slabs
The aspect ratio of the concrete slabs or bays of concrete slabs, such as in the case of L, T or boomerang concrete slab shapes, shall not exceed 5 to 1 (length to width).

7.5.13.3 Foundation details
7.5.13.3.1 For the identified expansive soil class the foundation details, external and internal thickenings shall be as follows.

(a) For light wall claddings refer to Table 7.4A and Figure 7.22.

(b) For medium wall or heavy wall claddings refer to Table 7.4B and Figure 7.23.

7.5.13.3.2 Situations where no internal thickenings shall be required are limited to a rectangular slab with long side not exceeding 17.0 m. Where this limit is exceeded, add additional internal thickenings across the slab with the same cross section dimensions and reinforcing as the external footing, so that the centre to centre spacing of thickenings is always less than 17.0 m.

COMMENT:

Design constraints:

a) The characteristic surface movements and the corresponding expansivity classifications have been calculated based on design for ultimate limit state (ULS) conditions for a 1 in 1000 year “extreme” drought event, and the serviceability limit state (SLS) conditions for a 1 in 500 year drought event.

b) Maximum soil movements are calculated to be based on a 500 year return period for SLS, and a 1000 year return period for ULS*.

(*NB: This differed from the recommendations contained within BRANZ Study Report 120A (BSR120A) which used a 300 year return period for the design level drought conditions)

c) Climate parameters adopted from BSR120A of \(\Delta u = 1.2 \, \text{pF} \), \(H_s = 1.5 \, \text{m} \), and a crack depth of 0.5 \(H_s \)

d) The \(I_{SS} \) (soil stability index) ranges attributed to the expansivity classifications as defined in 3.2.4 above have been calculated using the parameters presented in BSR120A and Equation 2.3.1 of AS 2870:2011.

e) Sites subject to parameters that differ from those mentioned above, in particular sites where the crack depth is less than 0.75 m, such as cut natural ground or clay backfill, require specific engineering assessment to confirm their appropriate site classification.

f) The effects of nearby trees (whether existing, recently removed, or future planting) are not considered in these solutions. It is recommended that specific geotechnical engineering advice is obtained where a tree is within a lateral distance of 1.5 times its mature height of the foundations.

Maintenance of foundations in expansive soils

Normal maintenance is that work generally recognised as necessary to achieve the expected performance over time of the foundation located on expansive soils. Unless otherwise specified by the designer and noted on the drawings, basic normal maintenance tasks should ensure that:

a) the drainage and wetting of the site is controlled so that extremes of wetting and drying of the soils are prevented, and

b) the position and operation of gardens adjacent to the dwelling are controlled, and the planting of trees near to foundations is suitably restricted, and

c) any leaks which develop in plumbing, storm water or sanitary sewage systems are repaired promptly.
Table 7.4A Reinforced concrete foundations in expansive soils for light wall claddings

<table>
<thead>
<tr>
<th>Expansive soil class</th>
<th>Slightly ‘S’</th>
<th>Moderately ‘M’</th>
<th>Highly ‘H’</th>
<th>Extremely ‘E’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil embedment (De)</td>
<td>375 mm</td>
<td>525 mm</td>
<td>575 mm</td>
<td>625 mm</td>
</tr>
<tr>
<td>Top steel (A_s top)</td>
<td>2/D16</td>
<td>2/D16</td>
<td>2/D16</td>
<td>2/D16</td>
</tr>
<tr>
<td>Bottom steel (A_s bottom)</td>
<td>1/D16</td>
<td>1/D25</td>
<td>1/D20</td>
<td>1/D25</td>
</tr>
<tr>
<td>Maximum spacing of internal thickenings</td>
<td>no internal thickening</td>
<td>no internal thickening</td>
<td>2.5 m crs.</td>
<td>2.5 m crs.</td>
</tr>
<tr>
<td>Depth of thickening (D1)</td>
<td>–</td>
<td>–</td>
<td>400 mm</td>
<td>450 mm</td>
</tr>
<tr>
<td>Base width (B1)</td>
<td>–</td>
<td>–</td>
<td>300 mm</td>
<td>350 mm</td>
</tr>
<tr>
<td>Top steel (A_s top)</td>
<td>–</td>
<td>–</td>
<td>2/D20</td>
<td>2/D20</td>
</tr>
<tr>
<td>Bottom steel (A_s bottom)</td>
<td>–</td>
<td>–</td>
<td>2/D16</td>
<td>2/D20</td>
</tr>
</tbody>
</table>

Table 7.4B Reinforced concrete foundations in expansive soils for medium wall and heavy wall claddings

<table>
<thead>
<tr>
<th>Expansive soil class</th>
<th>Slightly ‘S’</th>
<th>Moderately ‘M’</th>
<th>Highly ‘H’</th>
<th>Extremely ‘E’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil embedment (De)</td>
<td>500 mm</td>
<td>550 mm</td>
<td>775 mm</td>
<td>800 mm</td>
</tr>
<tr>
<td>Top steel (A_s top)</td>
<td>2/D16</td>
<td>2/D20</td>
<td>2/D20</td>
<td>3/D20</td>
</tr>
<tr>
<td>Bottom steel (A_s bottom)</td>
<td>2/D16</td>
<td>2/D16</td>
<td>2/D20</td>
<td>2/D20</td>
</tr>
<tr>
<td>Maximum spacing of internal thickenings</td>
<td>–</td>
<td>2.5 m crs.</td>
<td>2.5 m crs.</td>
<td>2.5 m crs.</td>
</tr>
<tr>
<td>Depth of thickening (D1)</td>
<td>–</td>
<td>350 mm</td>
<td>450 mm</td>
<td>500 mm</td>
</tr>
<tr>
<td>Base width (B1)</td>
<td>–</td>
<td>300 mm</td>
<td>300 mm</td>
<td>350 mm</td>
</tr>
<tr>
<td>Bottom steel (A_s bottom)</td>
<td>–</td>
<td>2/D16</td>
<td>2/D16</td>
<td>2/D20</td>
</tr>
</tbody>
</table>
Figure 7.2.2 Reinforced concrete foundations in expansive soils for light wall claddings
Clause 7.5.13 and Table 7.4A

Note: It would be considered good practice to construct corner junctions with the longitudinal reinforcing lapping around the corners and to construct internal beams with longitudinal bars at standard 90° hooked into the perimeter beams to provide adequate anchorage.

Figure 7.2.3 Reinforced concrete foundations in expansive soils for medium wall and heavy wall claddings
Clause 7.5.13 and Table 7.4B

Note: It would be considered good practice to construct corner junctions with the longitudinal reinforcing lapping around the corners and to construct internal beams with longitudinal bars at standard 90° hooked into the perimeter beams to provide adequate anchorage.
4.0 Earth Buildings

4.1 NZS 4299 subject to the following modifications:

4.1.1 NZS 4299, Paragraph 1.3 Definitions
Add (in the definition for Good Ground): “liquefaction, lateral spread,” after “subsidence” in subparagraph (c).

4.1.2 NZS 4299, Clause 2.3 Earthquake zones
Add to the end of Clause 2.3:
“The earthquake zone factor > 0.6 shall apply to the Canterbury earthquake region.”

4.1.3 NZS 4299, Figure 2.1 Earthquake zones
On the map shown in NZS 4299 Figure 2.1 Earthquake zones, the Canterbury earthquake region shall be interpreted as having an earthquake zone factor of > 0.6.

4.1.4 NZS 4299, Clause 4.8.6.
Delete: Clause 4.8.6
Replace with: “Clause 4.8.6 The thickness and reinforcement and detail of concrete slabs shall comply with the requirements of NZS 3604 as modified in B1/AS1 Paragraph 3.1.”

4.1.5 NZS 4299 Foundations where good ground has not been established

COMMENT:
Foundations for houses built on ground that has the potential for liquefaction or lateral spread are outside the scope of B1/AS1.

The MBIE/MfE guidance document “Planning and engineering guidance for potentially liquefaction-prone land” outlines a risk-based process to identify and manage liquefaction-related risk in land use planning and development decision-making.

For houses built in areas that have the potential for liquefaction, the MBIE guidance document “Repairing and rebuilding houses affected by the Canterbury earthquakes” may be appropriate. This guidance provides a range of potential foundation solutions depending on expected ground movement and available bearing capacity. These parameters also determine the required degree of involvement of structural and geotechnical engineers and the extent of specific engineering design.

5.0 Stucco

5.1 NZS 4251
6.0 Drains

6.1 AS/NZS 2566.1, including Amendment 1

6.2 AS/NZS 2566.2, including Amendments 1, 2 and 3

6.3 AS/NZS 2032

6.4 AS/NZS 2033
7.0 Glazing

7.1 NZS 4223.1

7.2 NZS 4223.2

7.3 NZS 4223.3

7.3.1 Clause 22.4.3 modified

Delete clause 22.4.3

Replace with:

“22.4.3 Structural glass barriers

Structural glass barriers use glass as a structural element and are normally classified by the following types. Glass design for these types shall comply with the following tables (see note 1):

Table 14 - Structural balustrade – cantilevered glass;
Table 15 - Structural balustrade – two-edge point fixed;
Table 16 - Structural balustrade – two-edge support;
Table 17 - Structural balustrade – three-edge support.

Design types and glass types not shown in Tables 14 to 17 require specific design.

All structural glass barriers safeguarding a fall of 1000 mm or more shall have interlinking rails, which in the event a glass pane breaks, spans the broken pane at the required barrier height and,

i) resists Line and Concentrated design loads (SLS) specified in Tables 14 to 17, and

ii) does not deflect more than 100 mm, in any direction, under the design loads.

Interlinking rails are not required for a heat-strengthened or toughened laminated safety glass barrier that:

(a) has a top capping, corner brackets or a proprietary system and will, when both panes of the laminate are fractured, resist a 0.2 kN concentrated load and not deflect more than 250 mm (see note 2), or

(b) has two or three edges supported by structural sealant joints or continuous clamps, and will, when both panes of the laminate are fractured, resist a 0.2 kN concentrated load and not deflect more than 250 mm (see note 2), or

(c) has a stiff interlayer and will, when both panes of the laminate are fractured, resist a 0.2 kN concentrated load and not deflect more than 250 mm (see note 2). Physical testing must be undertaken to demonstrate compliance with the load and deflection requirements for laminated glass barriers with a stiff interlayer (see note 3).

Physical testing of glass barriers must include all components of the barrier system, including all structural connections. Loads and deflections must be applied and measured horizontally, at midspan, at the required barrier height. The concentrated load shall be applied over an area of 100 mm x 100 mm and for at least one minute.

NOTE –

(1) The design of structural connections, fasteners and mounting hardware, that are part of the glass barrier, is outside the scope of this Standard and must be specifically designed.

(2) Laminated glass is susceptible to minor edge delamination, depending on the interlayer type and laminating process. Normally this will not affect the mechanical properties but can be noticeable on exposed edges.

(3) Test results for dual pane fracture of laminated glass barriers with stiff interlayers are not applicable to barriers that have narrower glass panes than that tested”

7.4 NZS 4223.4

8.0 Small Chimneys

See Acceptable Solution B1/AS3.

9.0 Steel

9.1 NASH Standard Part 2 Light Steel Framed Buildings