Status of Verification Methods and Acceptable Solutions

Verification Methods and Acceptable Solutions are prepared by the Ministry of Business, Innovation and Employment in accordance with section 22 of the Building Act 2004. Verification Methods and Acceptable Solutions are for use in establishing compliance with the New Zealand Building Code.

A person who complies with a Verification Method or Acceptable Solution will be treated as having complied with the provisions of the Building Code to which the Verification Method or Acceptable Solution relates. However, using a Verification Method or Acceptable Solution is only one method of complying with the Building Code. There may be alternative ways to comply.

Users should make themselves familiar with the preface to the New Zealand Building Code Handbook, which describes the status of Verification Methods and Acceptable Solutions and explains alternative methods of achieving compliance. Defined words (italicised in the text) and classified uses are explained in Clauses A1 and A2 of the Building Code and in the Definitions at the start of this document.
Document Status

The most recent version of this document (Amendment 3), as detailed in the Document History, is approved by the Chief Executive of the Ministry of Business, Innovation and Employment. It is effective from 14 February 2014 and supersedes all previous versions of this document.

The previous version of this document (Amendment 2) will cease to have effect on 14 August 2014.

People using this document should check for amendments on a regular basis. The Ministry of Business, Innovation and Employment may amend any part of any Verification Method or Acceptable Solution at any time. Up-to-date versions of Verification Methods and Acceptable Solutions are available from www.dbh.govt.nz

<table>
<thead>
<tr>
<th>G4: Document History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
</tr>
<tr>
<td>First published</td>
</tr>
<tr>
<td>Amendment 1</td>
</tr>
<tr>
<td>Reprinted incorporating Amendment 1</td>
</tr>
<tr>
<td>Amendment 3</td>
</tr>
</tbody>
</table>

Note: Page numbers relate to the document at the time of Amendment and may not match page numbers in current document.
Archived
New Zealand Building Code

Clause G4 Ventilation

This Clause is extracted from the New Zealand Building Code contained in the First Schedule of the Building Regulations 1992 and amended by the Building Amendment Regulations 1997.

<table>
<thead>
<tr>
<th>Provisions</th>
<th>Limits on application</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTIVE</td>
<td></td>
</tr>
<tr>
<td>G4.1 The objective of this provision is to safeguard people from illness or loss of amenity due to lack of fresh air.</td>
<td></td>
</tr>
<tr>
<td>FUNCTIONAL REQUIREMENT</td>
<td></td>
</tr>
<tr>
<td>G4.2 Spaces within buildings shall be provided with adequate ventilation consistent with their maximum occupancy and their intended use.</td>
<td></td>
</tr>
<tr>
<td>PERFORMANCE</td>
<td></td>
</tr>
<tr>
<td>G4.3.1 Spaces within buildings shall have means of ventilation with outdoor air that will provide an adequate number of air changes to maintain air purity.</td>
<td></td>
</tr>
<tr>
<td>G4.3.2 Mechanical air-handling systems shall be constructed and maintained in a manner that prevents harmful bacteria, pathogens and allergens from multiplying within them.</td>
<td></td>
</tr>
<tr>
<td>G4.3.3 Buildings shall have a means of collecting or otherwise removing the following products from the spaces in which they are generated:</td>
<td></td>
</tr>
<tr>
<td>(a) Cooking fumes and odours,</td>
<td></td>
</tr>
<tr>
<td>(b) Moisture from laundering, utensil washing, bathing and showering,</td>
<td></td>
</tr>
<tr>
<td>(c) Odours from sanitary and waste storage spaces,</td>
<td></td>
</tr>
<tr>
<td>(d) Gaseous by-products and excessive moisture from commercial or industrial processes,</td>
<td></td>
</tr>
<tr>
<td>(e) Poisonous fumes and gases,</td>
<td></td>
</tr>
<tr>
<td>(f) Flammable fumes and gases,</td>
<td></td>
</tr>
<tr>
<td>(g) Airborne particles,</td>
<td></td>
</tr>
<tr>
<td>(h) Bacteria, viruses or other pathogens, or</td>
<td></td>
</tr>
<tr>
<td>(i) Products of combustion.</td>
<td></td>
</tr>
</tbody>
</table>
FIRST SCHEDULE—continued

<table>
<thead>
<tr>
<th>Provisions</th>
<th>Limits on application</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4.3.4 Contaminated air shall be disposed of in a way which avoids creating a nuisance or hazard to people and other property.</td>
<td></td>
</tr>
<tr>
<td>G4.3.5 The quantities of air supplied for ventilation shall meet the additional demands of any fixed combustion appliances.</td>
<td></td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>7</td>
</tr>
<tr>
<td>Definitions</td>
<td>9</td>
</tr>
<tr>
<td>Verification Method G4/VM1</td>
<td>11</td>
</tr>
<tr>
<td>1.0 Ventilation Rate</td>
<td>11</td>
</tr>
<tr>
<td>2.0 Air Purity</td>
<td>11</td>
</tr>
<tr>
<td>Acceptable Solution G4/AS1</td>
<td>13</td>
</tr>
<tr>
<td>1.0 Ventilation</td>
<td>13</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>13</td>
</tr>
<tr>
<td>1.2 Natural ventilation – General</td>
<td>13</td>
</tr>
<tr>
<td>1.3 Natural ventilation of both household units and accommodation units with one external wall</td>
<td>13</td>
</tr>
<tr>
<td>1.4 Combined natural ventilation and mechanical ventilation</td>
<td>17</td>
</tr>
<tr>
<td>1.5 Mechanical ventilation</td>
<td>18</td>
</tr>
<tr>
<td>2.0 Ventilation of Spaces Containing Gas-fuel Appliances</td>
<td>19</td>
</tr>
<tr>
<td>2.1 Natural ventilation</td>
<td>19</td>
</tr>
<tr>
<td>2.2 Mechanical ventilation</td>
<td>19</td>
</tr>
<tr>
<td>2.3 Flue construction</td>
<td>19</td>
</tr>
<tr>
<td>2.4 Flue locations on dwellings</td>
<td>20</td>
</tr>
<tr>
<td>3.0 Another Solution for Gas-fuel Appliances</td>
<td>20</td>
</tr>
<tr>
<td>Appendix 1 Typical apartment layouts and ventilation options</td>
<td>21</td>
</tr>
<tr>
<td>Index</td>
<td>25</td>
</tr>
</tbody>
</table>
Archived
For the purposes of New Zealand Building Code (NZBC) compliance, the Standards and documents referenced in this Verification Method and Acceptable Solution (primary reference documents) must be the editions, along with their specific amendments, listed below. Where these primary reference documents refer to other Standards or documents (secondary reference documents), which in turn may also refer to other Standards or documents, and so on (lower-order reference documents), then the version in effect at the date of publication of this Verification Method and Acceptable Solution must be used.

Standards New Zealand

- **AS/NZS 3666:** Air-handling and water systems of buildings –
 - Part 1: 2011 Design, installation and commissioning
 - Part 2: 2011 Operation and maintenance
- **NZS 4303:** Ventilation for acceptable indoor air quality
- **AS/NZS 4740:** Natural ventilators – Classification and performance
- **AS/NZS 5601:** Gas installations
 - Part 1: 2010 General installations

Standards Australia

- **AS 1668:** The use of mechanical ventilation and air-conditioning in buildings
 - Part 2: 2002 Ventilation design for indoor-air contaminant control

New Zealand Government Departments

- **Department of Labour (Occupational Safety and Health) Workplace exposure standards and biological exposure indices for New Zealand 1992**

Chartered Institution of Building Services Engineers, London

- **CIBSE Code Series A:** 1996 Air distribution systems

Where quoted

- AS1 1.5.1 b)
- AS1 1.5.1 b)
- AS1 1.5.1 a) d)
- AS1 1.3.7 c)
- AS1 2.3.1 b), 2.4.1 c), 3.0.1
Archived
Definitions

This is an abbreviated list of definitions for words or terms particularly relevant to this Verification Method and Acceptable Solution. The definitions for any other italicised words may be found in the New Zealand Building Code Handbook.

Adequate Adequate to achieve the objectives of the Building Code.

Atmospheric burner A burner system where all the air for combustion is induced by the inspirating effect of a gas injector and/or by natural draught in the combustion chamber without mechanical assistance.

Building has the meaning ascribed to it by sections 8 and 9 of the Building Act 2004.

Building element Any structural and non-structural component or assembly incorporated into or associated with a building. Included are fixtures, services, drains, permanent mechanical installations for access, glazing, partitions, ceilings and temporary supports.

Chimney A non-combustible structure which encloses one or more flues, fireplaces or other heating appliances.

Common extract duct A mechanical ventilation duct that extracts from different household units, and may contain air, moisture and contaminant.

Construct In relation to a building, includes to design, build, erect, prefabricate and relocate the building.

Draught diverter A device, without moving parts, fitted in the flue of an appliance for isolating the combustion system from the effects of pressure changes in the secondary flue.

Equivalent aerodynamic area The area of an equivalent aerodynamically perfect orifice, and equals the penetration area required by the natural ventilation device multiplied by the discharge coefficient determined under test.

Fire separation Any building element which separates firecells or firecells and safe paths, and provides a specific fire resistance rating.

Fixture An article intended to remain permanently attached to and form part of a building.

Flue The passage through which the products of combustion are conveyed to the outside.

Forced or induced draught appliance An appliance where all or part of the air for combustion is provided by a fan or other mechanical device which is an integral part of the combustion system.

Habitable space A space used for activities normally associated with domestic living, but excludes any bathroom, laundry, water closet, pantry, walk-in wardrobe, corridor, hallway, lobby, clothes-drying room, or other space of a specialised nature occupied neither frequently nor for extended periods.

Household unit

a) means any building or group of buildings, or part of a building or group of buildings, that is:

i) used, or intended to be used, only or mainly for residential purposes; and

ii) occupied, or intended to be occupied, exclusively as the home or residence of not more than one household; but

b) does not include a hostel, boarding house or other specialised accommodation.

Intended use in relation to a building:

a) includes any or all of the following:

i) any reasonably foreseeable occasional other use that is not incompatible with the intended use; and

ii) normal maintenance; and

iii) activities taken in response to fire or any other reasonably foreseeable emergency

b) but does not include any other maintenance and repairs or rebuilding.
Natural draught The flow produced by the tendency of warmed gases to rise.

Net openable area is the area of windows or doors or other opening measured on the face dimensions of the openable building element concerned.

Occupied space Any space within a building in which a person will be present from time to time during the intended use of the building.

Outdoor air Air as typically comprising by volume:
 i) oxygen 20.94%
 ii) carbon dioxide 0.03%
 iii) nitrogen and other inert gases 79.03%.

Passive stack ventilator A system including a ventilation shaft which uses natural draught to ventilate spaces.

Permanent opening An opening which cannot be closed, this implies that doors, windows etc are NOT permanent openings, although door undercuts are.

Room-sealed appliance An appliance designed so that air for combustion neither enters from, nor combustion products enter into, the room in which the appliance is located.

Trickle ventilator A controllable ventilation opening through the external envelope to the outside to provide background ventilation.
Verification Method G4/VM1

1.0 Ventilation Rate

1.0.1 In ducted mechanical ventilation systems the air-flow rate (and consequently number of air changes), may be verified using the methods of measurement given in the CIBSE Code Series A, Appendix A3.1. For determining the volume of outdoor air, measurements shall be taken close to the outdoor air inlet.

2.0 Air Purity

2.0.1 The acceptability of indoor air purity for workplaces may be verified by demonstrating that contaminant levels do not exceed the limits recommended in “Workplace Exposure Standards and Biological Exposure Indices for New Zealand 1992”.

Archived
1.0 Ventilation

1.1 Introduction

1.1.1 Ventilation of spaces within buildings is required to maintain air purity by a flow of outdoor air through the building envelope, with or without mechanical assistance.

1.1.2 Ventilation of spaces within buildings must be provided by natural ventilation (refer to Paragraphs 1.2 and 1.3), mechanical ventilation (refer to Paragraph 1.5), or a combination of mechanical and natural ventilation (refer to Paragraph 1.4).

1.1.3 Buildings containing Type 5 fire alarm systems must have mechanical extract ventilation installed in kitchens.

1.2 Natural ventilation – General

1.2.1 Where natural ventilation is available via adjacent spaces, specific ventilation is not required to small spaces such as hallways and lobbies in household units.

1.2.2 Natural ventilation of occupied spaces must be achieved by providing a net openable area of windows or other openings to the outside of no less than 5% of the floor area. The 5% floor area requirement does not apply to:

a) occupied spaces in Commercial and Industrial buildings where products listed in NZBC Clause G4.3.3 are generated (mechanical ventilation of these spaces is required), and

b) household units and accommodation units where there is only one external wall with opening windows (refer to Paragraph 1.3 for additional requirements if natural ventilation is used).

1.2.3 Openable building elements shall be constructed in a way that allows them to remain fixed in the open position as a means of ventilation during normal occupancy of the building.

COMMENT:
1. The net openable area of windows or doors is measured on the face dimensions of the building element concerned.
2. Fixing in an open position of doors and windows used for ventilation is necessary to avoid injury or damage from sudden closure in the event of strong winds or other forces.
3. Keeping water from entering the building must be considered for compliance with NZBC Clause E2 External Moisture.

1.2.4 Natural ventilation of car parks shall comply with the natural ventilation part of AS 1668.2 Section 7.

1.3 Natural ventilation of household units and accommodation units with one external wall

Scope

1.3.1 Paragraphs 1.3.2 to 1.3.9 specify the natural ventilation for both household units and accommodation units with only one external wall, such as those found in apartments, hotels and motels.

Kitchens, bathrooms, toilets and laundries that have an external wall

1.3.2 For kitchens, bathrooms, toilets and laundries located on the external wall, moisture and other contaminants must be ventilated to the outside by natural ventilation using either:

a) windows and/or other openings to the outside with a net openable area of no less than 5% of the floor area, or

b) high level trickle ventilators located through the external wall or building elements within the external wall (see Paragraph 1.3.9 for trickle ventilators), where the distance between the external wall and opposing wall is less than 6 metres.

COMMENT:
1. The net openable area of windows or doors is measured on the face dimensions of the building element concerned.
2. Fixing in an open position of doors and windows used for ventilation is necessary to avoid injury or damage from sudden closure in the event of strong winds or other forces.
3. Keeping water from entering the building must be considered for compliance with NZBC Clause E2 External Moisture.

COMMENT:
1. The net openable area of windows or doors is measured on the face dimensions of the building element concerned.
2. Fixing in an open position of doors and windows used for ventilation is necessary to avoid injury or damage from sudden closure in the event of strong winds or other forces.
3. Keeping water from entering the building must be considered for compliance with NZBC Clause E2 External Moisture.
Kitchens, bathrooms, toilets and laundries without an external wall

1.3.3 For kitchens, bathrooms, toilets and laundries not located on the external wall, moisture and other contaminants must be ventilated to the outside by natural ventilation having:

a) a passive stack ventilator, located in the kitchen, bathroom, toilet or laundry, designed to extract a continuous airflow through the surrounding habitable spaces (see Paragraph 1.3.7 for passive stack ventilators), and

b) high level trickle ventilators, located within the external wall or in building elements that are integrated within the external wall (see Paragraph 1.3.9 for trickle ventilators), and

c) permanent openings for airflow between the surrounding habitable spaces and the kitchen, bathroom, toilet or laundry of no less than 5% of the combined floor area of the spaces, and not compromising the privacy of the toilet or bathroom, and

d) a combined distance between the habitable space and the kitchen, bathroom, toilet, or laundry of less than 10 metres.

Habitable spaces that have an external wall and open to a kitchen, bathroom, toilet or laundry with a passive stack ventilator

1.3.4 For habitable spaces with both an external wall and a permanent opening to a kitchen, bathroom, toilet or laundry, ventilation shall be achieved by:

a) installing high level trickle ventilators, located within the external wall or building elements within the external wall (see Paragraph 1.3.9 for trickle ventilators), and

b) having a passive stack ventilator installed in the kitchen, bathroom, toilet or laundry, and

c) having an area of permanent opening between the two spaces of no less than 5% of the combined floor area of the habitable space and the kitchen, bathroom, toilet or laundry, and not compromising the privacy of the toilet or bathroom, and

d) windows and/or other openings to the outside with a net openable area of no less than 5% of the floor area, and

e) having a maximum dimension between the external wall and the furthest internal opposing wall, when measured across the combined habitable space and the kitchen, bathroom, toilet, or laundry, of less than 10 metres.

Habitable spaces that have an external wall and do not open to a kitchen, bathroom, toilet or laundry with a passive stack ventilator

1.3.5 For habitable spaces with an external wall and no permanent opening to surrounding spaces, ventilation must be achieved by having:

a) windows and/or other openings to the outside with a net openable area of no less than 5% of the floor area, and

b) high level trickle ventilators, located within the external wall or in building elements within the external wall (see Paragraph 1.3.9 for trickle ventilators), and

c) a distance between the external wall and opposing wall of the habitable spaces of less than 6 metres.

Habitable spaces ventilated via another habitable space

1.3.6 Ventilation of a habitable space without openings to the exterior via another habitable space must be achieved by:

a) providing from the other habitable space to outside, openable windows and/or other openings of net openable area of no less than 5% of the combined floor area of the combined habitable spaces, and
b) providing high and low level *trickle ventilators* located on the external wall (see Paragraph 1.3.9 for *trickle ventilators*), sized according to the combined floor area, and
c) providing an area of *permanent opening* between the two spaces of no less than 5% of the combined floor area of the *habitable spaces*, and
d) having a combined distance of the *habitable spaces*, measured between the external wall and furthest opposing wall, of less than 6 metres.

Passive stack ventilators

1.3.7 *Passive stack ventilators* consist of a vertical ventilation shaft which uses air buoyancy to ventilate spaces. *Passive stack ventilators* shall:
a) have no connections from spaces other than kitchens connecting to the kitchen *passive stack ventilator*, and
b) not be used in *household units* in combination with mechanical ventilation systems, and
c) be designed in accordance with AS/NZS 4740 Section 3, and
d) be designed to achieve extract airflow rates specified in AS 1668.2 Table B1, using the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Density</td>
<td>$\rho = 1.2 \text{ kg/m}^3$</td>
</tr>
<tr>
<td>Gravitational Constant</td>
<td>$g = 9.81 \text{ m/s}^2$</td>
</tr>
<tr>
<td>Temperature Differential</td>
<td>$\Delta T = 3K$</td>
</tr>
<tr>
<td>Outside Ambient Temperature</td>
<td>$T = 300K$</td>
</tr>
<tr>
<td>Wind Velocity</td>
<td>$V_t = 0\text{m/s}$, and</td>
</tr>
</tbody>
</table>

e) be integrated into the *building* without decreasing the performance of the *building* envelope and the partition walls of the *building* for external moisture, fire and acoustics, and
f) be capable of drawing air through *trickle ventilators or permanent openings* from the room or adjacent spaces. The *permanent openings* to the surrounding spaces and *trickle ventilators* to the outside shall have an *equivalent aerodynamic area* greater than the *equivalent aerodynamic area* of the *passive stack ventilator*. This is to ensure air can be drawn through the *passive stack ventilator* effectively.
g) when extracting from kitchens:
i) maintain the *fire separation* of the fire separated shaft with a pressure-forming intumescent fire collar around a collapsible duct, and
ii) have ducting downstream of the fire collar made of non-combustible material, and
iii) have connections that contain no more than two bends and do not have any duct that is more than 45° to the vertical, and
i) have the branch connection to the
common duct via a fire shunt of 1800 mm
in height (see Figure 1), and

ii) have the fire shunt and the stack located
in a fire separated shaft.

h) when extracting from bathrooms, toilets and
laundries:

i) be installed in a fire separated shaft, and

ii) have the branch connection to the
common extract duct via a fire shunt of
900 mm in height (see Figure 1), and

iii) have connections that contain no more
than two bends and do not have any duct
that is more than 45° to the vertical, and

iv) be ducting made of non-combustible
material, unless the common extract duct
is the only duct in the fire separated shaft.

i) have ventilation ducts and stacks that are
insulated in any unheated areas with a
minimum thickness of 25 mm of a material
having a thermal conductivity of no less than
0.04W/m²K, and

j) have a condensation trap fitted to the part
of the duct above the roof level.

1.3.8 The terminal of a passive stack ventilator
shall:

a) have an equivalent aerodynamic area
greater than the cross-sectional area of the stack, and

b) extend above the roof to at least the ridge
height.

COMMENT:

To comply with b) the outlet of the passive stack
ventilator should be placed at the ridge of the roof to
reduce the adverse effects of wind gusts.

1.3.9 Trickle ventilators are devices that have an
opening to the outside. Trickle ventilators shall:

a) have an opening of no less than 2000 mm²
equivalent aerodynamic area, and

b) be located to minimise draughts, and

c) be secured to keep pests and insects out, and

d) have acoustic attenuation, if required by
NZBC G6 Airborne and Impact Sound, and

e) be controllable and closable in all conditioned
spaces, and

f) be installed in household units, providing
they do not contain mechanical supply
ventilation, and

g) have the sum of the equivalent aerodynamic
area greater than the sum of the equivalent
area of the passive stack ventilator(s), if
installed in a household unit, and

h) have the equivalent aerodynamic area, based
on the number of occupants, for the space
as given in Tables 1 and 2, and

Table 1: Number of occupants

<table>
<thead>
<tr>
<th>Household unit accommodation unit type</th>
<th>Number of people</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studio</td>
<td>2</td>
</tr>
<tr>
<td>1 bedroom</td>
<td>2</td>
</tr>
<tr>
<td>2 bedroom</td>
<td>3</td>
</tr>
<tr>
<td>Greater than 2 bedrooms</td>
<td>Add 1 per bedroom</td>
</tr>
</tbody>
</table>

Table 2: Total required equivalent aerodynamic area per space (mm²)

<table>
<thead>
<tr>
<th>Ventilator locations</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>High and low level</td>
<td>4000</td>
<td>8000</td>
<td>12,000</td>
<td>16,000</td>
<td>20,000</td>
</tr>
<tr>
<td>High level only</td>
<td>3000</td>
<td>6000</td>
<td>9000</td>
<td>12,000</td>
<td>15,000</td>
</tr>
</tbody>
</table>
i) have, where high and low level *trickle ventilators* are required, the high and low level *trickle ventilators* of approximately the same *equivalent aerodynamic area* and separated by a minimum of 1 metre. High level *trickle ventilators* are located in the top half of the wall. Low level *trickle ventilators* are located in the bottom half of the wall.

COMMENT:
There are a range of *trickle ventilators*, sometime called background ventilators, on the market.

1.4 Combined natural ventilation and mechanical ventilation

Scope

1.4.1 This section specifies the combined natural and mechanical ventilation requirements for both *household units* and accommodation units, with one external wall, such as those often found in apartments, hotels and motels. *Habitable spaces* will be naturally ventilated, and kitchens, bathrooms, toilets and laundries will be ventilated by continuous or intermittent mechanical extract ventilation.

Combination ventilation with continuous mechanical extract

1.4.2 For *habitable spaces* with both one external wall and a *permanent opening* to a kitchen, bathroom, toilet or laundry, within which a continuous mechanical extract system is installed, ventilation shall be achieved by:

- a) integrating high level *trickle ventilators*, located within the external wall or *building elements* that are integrated within the external wall (see Paragraph 1.3.9 for *trickle ventilators*), and
- b) having a *net openable area* of windows and/or other openings to the outside of no less than 5% of the floor area, and
- c) having the kitchen, bathroom, toilet, or laundry door undercut by 20 mm, and
- d) having a maximum dimension between the external wall and the furthest internal opposing wall, when measured across the combined *habitable space* and the kitchen, bathroom, toilet, or laundry, of less than 10 metres.

Combination ventilation with intermittent mechanical extract

1.4.3 For *habitable spaces* with one external wall and a *permanent opening* to a kitchen, bathroom, laundry, or toilet, within which an intermittent mechanical extract system is installed, ventilation shall be achieved by:

- a) integrating high and low level *trickle ventilators*, located within the external wall or *building elements* that are integrated within the external wall (see Paragraph 1.3.9 for *trickle ventilators*), and
- b) having a *net openable area* of windows and/or other openings to the outside of no less than 5% of the floor area, and
- c) having the kitchen, bathroom, toilet, or laundry door undercut by 20 mm, and
- d) having a maximum dimension between the external wall and the furthest internal opposing wall, when measured across the combined *habitable space* and the kitchen, bathroom, toilet, or laundry, of less than 6 metres.

COMMENT:
If Paragraphs 1.4.2 and 1.4.3 both apply, then ventilation shall be achieved by complying with Paragraph 1.4.3.
1.5 Mechanical ventilation

1.5.1 Mechanical ventilation systems must satisfy the following conditions:

a) outdoor air supply shall be designed and equipment installed to comply with NZS 4303, or AS 1668.2 (excluding Table A1 and Sections 3 and 7), and to provide outdoor air to occupied spaces at the flow rates given in NZS 4303 Table 2, and

b) air-handling systems shall be installed and maintained to the requirements of AS/NZS 3666.1 and AS/NZS 3666.2, and

c) extract ventilation shall:

i) be constructed so that any products listed in Clause G4.3.3 are removed, collected or diluted by ventilation rates and methods set out in AS 1668.2 Section 5

COMMENT:
Commercial kitchen extract ventilation is included in AS 1668.2 Section 5.

ii) where provided to remove moisture and other contaminants from kitchens, bathrooms, toilets and laundries in household units, exhaust the air to the outside at flow rates given in AS 1668.2, Table B1, and

iii) where provided for extract from kitchens, bathrooms, toilets and laundries in buildings containing household units or accommodation units, refer to Paragraphs 1.5.2 and 1.5.3.

d) outdoor air intakes shall be located to avoid contamination from any local source in accordance with AS 1668.2 Clause 4.3.1 and NZS 4303 Clause 5.5, and

e) recirculated air systems shall comply with AS 1668.2 Clause 4.5, and

f) contaminated air discharge systems shall discharge contaminated air in a way that complies with AS 1668.2 Clause 5.10, and

g) filtration shall comply with AS 1668.2 Clause 4.4, and

h) commissioning shall comply with CIBSE Code Series A.

1.5.2 Extract ventilation from kitchens must:

a) maintain the fire separation of the fire separated shaft with a pressure-forming intumescent fire collar around a collapsible duct, and

b) have ducting, downstream of the fire collar, made of non-combustible material, and

c) have the branch connection to the common extract duct located in a fire separated shaft, and

d) have the fire shunt and common extract duct located in a separated shaft.

1.5.3 Extract ventilation from bathrooms, toilets and laundries must:

a) be installed in a fire separated shaft, and

b) have the branch connection to the common extract duct via a fire shunt of 900 mm in height, and

c) be ducting made of non-combustible material, unless the common extract duct is the only duct in the fire separated shaft.

Car park ventilation

1.5.4 Mechanical ventilation of car parks shall comply with the mechanical ventilation part of AS 1668.2 Section 7.

Positive and negative pressure

1.5.5 Building interiors ventilated by mechanical systems incorporating filtration shall, except where Paragraph 1.4.4 applies, be maintained at a positive pressure.

COMMENT:
Positive pressure allows good control of intake air filtration, whereas under negative pressure, unfiltered air may be drawn through gaps and openings in building elements.

1.5.6 Spaces in which mechanical ventilation is used to remove or collect contaminants shall be maintained at negative pressure relative to other spaces in the building.

COMMENT:
Negative pressure reduces the likelihood of contaminants being spread to other spaces.
2.0 Ventilation of Spaces Containing Gas-fuel Appliances

2.1 Natural ventilation

2.1.1 Natural ventilation systems for appliances burning gas fuel designed to operate under natural draught conditions shall:

- Supply air under equal pressure conditions to the burners and to the draught diverter i.e. in the same room and as close as possible to the appliance, and

- For non room-sealed appliances having a combined gas input exceeding 1 kW for each m\(^3\) of the space in which they are installed, be provided with vents, in addition to the ventilation required by Paragraphs 1.1 and 1.2. The vents shall be sized and located according to Paragraphs 2.1.3 to 2.1.8.

2.1.2 Domestic gas cookers in non room-sealed spaces which are also used for sleeping, require permanent venting to the outside. The size of the vent shall be appropriate to the gas input to the cooker and shall be subject to specific design.

2.1.3 Vent sizes

Two permanent vent openings, one high level and one low level, shall be provided, each with a free ventilation area per kW of gas input (of all appliances in the space) of no less than:

- 1200 mm\(^2\) for spaces vented directly to the outside, and

- 2300 mm\(^2\) for spaces vented via adjacent spaces.

2.1.4 The vent opening areas given in Paragraph 2.1.3 may be halved for plant rooms and boiler rooms infrequently occupied by people.

2.1.5 Vent openings shall have vertical dimensions of no less than 50 mm, and no dimension of less than 6.0 mm in any other direction.

2.1.6 Low-level vents shall have their lower edge no more than 100 mm above floor level, and upper-level vents shall have their lower edge no less than 75 mm above the top of the draught diverter relief opening.

2.1.7 A louvred door is also an acceptable method of ventilation provided the bottom of the free area extends to not less than 100 mm above the floor, and the requisite high-level free area is available from the level of 75 mm above the draught diverter relief opening.

2.1.8 In plant room or boiler room installations, low- and high-level vents may be combined into a single opening, provided it reaches from floor to ceiling and has a total free area equivalent to that required for the two separate vents.

2.2 Mechanical ventilation

2.2.1 When mechanical ventilation is used, the system shall have either:

- Mechanical supply with mechanical extraction, or

- Mechanical supply with natural exhaust.

2.2.2 A mechanical ventilation system shall:

- For each kW of gas consumption (of all appliances in the plant room) provide outdoor air at the rate of:
 - 3.6 m\(^3\)/h for forced or induced draught appliances, and
 - 7.2 m\(^3\)/h for appliances with atmospheric burners, and

- Remove exhaust air from the room either:
 - Mechanically at one third the inlet rate, or
 - Naturally via high-level openings having a free ventilation area of no less than 600 mm\(^2\) per kW of total gas consumption for all appliances in the room.

2.3 Flue construction

2.3.1 A flue system shall have:

- The cross-sectional area of a natural draught flue system external to the appliances, no less than the cross-sectional area of the appliance outlet, or

- The flue designed to comply with AS/NZS 5601.1, section 6.7 and Appendix H, and

- If a draught diverter is not fitted:
i) flue products discharged to the atmosphere only at the flue terminal, unless the discharge at other locations can be achieved without hazard to persons, property or appliance operation, and

ii) a method of automatically shutting down the main burners of forced or induced draught appliances, should the normal free discharge of the flue be interrupted.

2.3.2 Draught diverters

Draught diverter installations shall discharge the total flue products including excess air and draught diverter dilution air, at the flue terminal without spillage from the skirt of the draught diverter.

2.4 Flue locations on dwellings

2.4.1 The location of a flue terminal on a dwelling shall have:

a) Outlets from natural draught flues or chimneys, positioned relative to surrounding construction to avoid wind causing down draughts in the flue,

b) Flue pipes which extend through the roof, terminated no closer than:

i) 500 mm to the nearest part of any roof,

ii) 2.0 m to the roof level of a flat roof intended for personal or public use, and

iii) 500 mm above any parapet, and

c) Flues which terminate on the wall of a building located clear of inlets for outside air in accordance with the minimum clearances specified in AS/NZS 5601.1, section 6.9 and Figure 2.

3.0 Another Solution for Gas-fuel Appliances

3.0.1 AS/NZS 5601.1 Sections 1, 3, 4, 5 and 6 Appendices A to K is an Acceptable Solution, but may exceed the performance criteria of NZBC G4.
Appendix 1 Typical apartment layouts and ventilation options

Table 3: Ventilation options – Layout 1

<table>
<thead>
<tr>
<th>Room</th>
<th>Natural ventilation (Paragraph)</th>
<th>Mechanical ventilation (Paragraph)</th>
<th>Combined ventilation (Paragraph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedroom</td>
<td>1.3.5</td>
<td>1.5</td>
<td>—</td>
</tr>
<tr>
<td>Living</td>
<td>1.3.4</td>
<td>1.5</td>
<td>1.4.2 (10 m max dist) or 1.4.3 (6 m max dist)</td>
</tr>
<tr>
<td>Kitchen</td>
<td>1.3.2</td>
<td>1.5</td>
<td>1.4.2 (10 m max dist) or 1.4.3 (6 m max dist)</td>
</tr>
<tr>
<td>Bathroom</td>
<td>1.3.3</td>
<td>1.5</td>
<td>1.4.2 (10 m max dist) or 1.4.3 (6 m max dist)</td>
</tr>
</tbody>
</table>
Table 4: Ventilation options – Layout 2

<table>
<thead>
<tr>
<th>Room</th>
<th>Natural ventilation (Paragraph)</th>
<th>Mechanical ventilation (Paragraph)</th>
<th>Combined ventilation (Paragraph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedrooms</td>
<td>1.3.5</td>
<td>1.5</td>
<td>—</td>
</tr>
<tr>
<td>Living</td>
<td>1.3.4</td>
<td>1.5</td>
<td>1.4.2 (10 m max dist) or 1.4.3 (6 m max dist)</td>
</tr>
<tr>
<td>Kitchen</td>
<td>1.3.3</td>
<td>1.5</td>
<td>1.4.2 (10 m max dist) or 1.4.3 (6 m max dist)</td>
</tr>
<tr>
<td>Bathroom</td>
<td>1.3.3</td>
<td>1.5</td>
<td>1.4.2 (10 m max dist) or 1.4.3 (6 m max dist)</td>
</tr>
</tbody>
</table>
Table 5: Ventilation options – Layout 3

<table>
<thead>
<tr>
<th>Room</th>
<th>Natural ventilation (Paragraph)</th>
<th>Mechanical ventilation (Paragraph)</th>
<th>Combined ventilation (Paragraph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedrooms</td>
<td>1.3.5</td>
<td>1.5</td>
<td>–</td>
</tr>
<tr>
<td>Living</td>
<td>1.3.5</td>
<td>1.5</td>
<td>1.4.2 (10 m max dist) or 1.4.3 (6 m max dist)</td>
</tr>
<tr>
<td>Kitchen</td>
<td>1.3.3</td>
<td>1.5</td>
<td>1.4.2 (10 m max dist) or 1.4.3 (6 m max dist)</td>
</tr>
<tr>
<td>Bathroom</td>
<td>1.3.3</td>
<td>1.5</td>
<td>1.4.2 (10 m max dist) or 1.4.3 (6 m max dist)</td>
</tr>
</tbody>
</table>
Archived
Index G4/VM1 & AS1

All references to Verification Methods and Acceptable Solutions are preceded by VM or AS respectively.

Air-handling systems .. AS1 1.5.1 b)
Air purity .. VM1 2.0
Car park ventilation .. AS1 1.5.4
Combined natural ventilation and mechanical ventilation AS1 1.4
Contaminated air discharge systems AS1 1.5.1 f)
Gas-fuel appliances ... AS1 2.0
 another solution ... AS1 3.0
 draught diverters ... AS1 2.3.2
 flue construction ... AS1 2.3
 flue location on dwellings .. AS1 2.4
 mechanical ventilation .. AS1 2.2
 natural ventilation .. AS1 2.1
Extract ventilation ... AS1 1.5.1 c)
Mechanical ventilation ... AS1 1.5.2
Natural ventilation .. AS1 1.1, 1.2, 1.3, 2.1
Natural ventilation of household units and accommodation units with one external wall .. AS1 1.3
Outdoor air supply ... AS1 1.5.1 a) d)
Passive stack ventilators .. AS1 1.3.7
Positive and negative pressure .. AS1 1.3.7
Recirculated air systems ... AS1 1.5.5
Trickle ventilators ... AS1 1.3.9
Ventilation rate ... VM1 1.0
Archived